Три модели фильтрации неньютоновских жидкостей



Течение ньютоновской жидкости описывается законом Ньютона ,          (7.1)

где m - -динамический коэффициент, t- касательное напряжение; du / dy - градиент скорости в направлении, перпендикулярном направлению течения х. Зависимость между t и du / dyявляется в этом случае прямой линией, проходящей через начало координат (рис. 7.1, кривая 2).

Жидкости, не подчиняющиеся закону трения (7.1), называются аномальными, или неньютоновскими. Неньютоновские жидкости можно разбить на три класса.

1. Неньютоновские вязкие жидкости, для которых касательное напряжение зависит только от градиента скорости (стационарно реологические

жидкости): ,       (7.2)

2. Жидкости, для которых связь между t и du / dy зависит от времени действия напряжений (нестационарно реологические жидкости), т. е.

,                                                                   (7.3)

3. Вязкоупругие жидкости, т. е. среды, обладающие свойствами как твердого тела, так и жидкости, а также способные к частичному восстановлению формы после снятия напряжений. Для таких сред зависимость между касательными напряжениями и градиентом скорости более сложная; она включает производные по времени как напряжений, так и градиента скорости.

Среди неньютоновских жидкостей первого класса, описываемых уравнением (7.2), можно выделить три типа.

1. Вязкопластичные жидкости, для которых уравнение (7.2) имеет вид

при t > t 0 ,        (7.4)           при t £ t 0 .

Графическое представление этой зависимости, называемое реологической кривой (или “кривой течения”), приведено на рис. 7.1 (кривая 4). В равенство (7.3), кроме коэффициента вязкости m, входит также постоянная t 0 , называемая начальным (или предельным) напряжением сдвига. Считается, что при t £ t 0 жидкость ведет себя как твердое тело и течение отсутствует.

2. Псевдопластичные жидкости. Эксперименты показали, что для ряда сред связь между напряжением сдвига и градиентом скорости в логарифмических координатах оказывается на некотором участке линейной. Угловой коэффициент, соответствующей прямой, заключен между 0 и 1. Поэтому для описания таких сред используется степенная зависимость

,      (n <1),                                                      (7.5)

 где k и n постоянны для данной жидкости; коэффициент k - мера консистенции жидкости; отличие показателя n от единицы характеризует степень отклонения данной жидкости от ньютоновской. Типичная реологическая кривая (7.4) псевдопластичной жидкости приведена на рис. 7.1 (кривая 3). Модель псевдопластичной жидкости применяется, в частности, для описания движения растворов и расплавов полимеров.

Введем понятие кажущейся вязкости m* как отношения касательного напряжения к градиенту скорости:

.Для псевдопластичной жидкости, как следует из (7.4), эта величина и так как n<:1, то m * убывает с возрастанием градиента скорости.

 

3. Дилатантные жидкости описываются степенным уравнением (7.4), но при n>1. Кривая течения представлена на рис. 7.1 (кривая 1). У этих жидкостей кажущаяся вязкость m* увеличивается с возрастанием градиента скорости. Модель дилатантной жидкости хорошо описывает свойства суспензий с большим содержанием твердой фазы.

В зависимости от вида неньютоновской жидкости по разному записывается и закон фильтрации. Так закон фильтрации вязкопластичной жидкости (7.3) в пористой среде записывается в виде:

u>0;                                                    (7.6)

, u=0, где -                                         (7.7)

 предельный (начальный) градиент.

В соответствии с (7.5) скорость фильтрации u отлична от нуля только в тех областях, где ½ gradp ½ > g (рис. 7.2, кривая 1). Модель фильтрации с предельным градиентом следует рассматривать как некоторую идеализацию реальных течений аномальных нефтей в пластовых условиях, для которых реологическая кривая имеет вид кривой 2 на рис. 7.2. Для сравнения на рис. 7.2 показан закон Дарси (кривая 3).

 


Дата добавления: 2018-11-24; просмотров: 557; Мы поможем в написании вашей работы!

Поделиться с друзьями:






Мы поможем в написании ваших работ!