Динамика вращательного движения. Момент инерции.



Вращательное движение — вид механического движения. При вращательном движении абсолютно твёрдого тела его точки описывают окружности, расположенные в параллельных плоскостях. Центры всех окружностей лежат при этом на одной прямой, перпендикулярной к плоскостям окружности и называемой осью вращения. Ось вращения может располагаться внутри тела и за его пределами. Ось вращения может быть подвижной и неподвижной.

Аналогия между параметрами кинематики и динамики:

 S ϕR              путь
V ω                Скорость - угловая скорость
a β Ускорение – угловое ускорение
F M=I*β Сила – момент силы
m I=km Масса – момент инерции
P=mV L=p*l Импульс – момент импульса
A=F*S A=M*ϕ Работа
W= W= Энергия

 

 

 Момент инерции механической системы относительно неподвижной оси a («осевой момент инерции») — физическая величина Ja, равная сумме произведений масс всех n материальных точек системы на квадраты их расстояний до оси:

где: — масса i-й точки,  — расстояние от i-й точки до оси.

Осевой момент инерции тела Ja является мерой инертности тела во вращательном движении вокруг оси a подобно тому, как масса тела является мерой его инертности в поступательном движении.  

Теорема Штейнера

Момент инерции твёрдого тела вокруг произвольной оси равен моменту инерции тела вокруг оси, проходящей через центр массы данного тела параллельно данной оси, плюс произведение массы тела на квадрат расстояния между осями.

Момент силы. Основной закон динамики вращательного движения.

Момент силы— векторная физическая величина, равная произведению радиус-вектора, проведенного от оси вращения к точке приложения силы, на вектор этой силы. Характеризует вращательное действие силы на твёрдое тело.   

В физике момент силы можно понимать как «вращающая сила». В системе СИ единицами измерения для момента силы является ньютон-метр.

Основным законом динамики вращательного движения является связь момента силы М с моментом инерции   и угловым ускорением β:

 

Работа при вращательном движении тела

 - момент силы  относительно оси вращения z.

   - векторное произведение.

Кинетическая энергия при вращательном движении

 - момент инерции твердого тела, относительно оси z.

Моментом инерции материальной точки  называется величина:

Следовательно,

Величина I зависит от положения оси вращения и от распределения масс в теле.

Момент импульса. Закон сохранения момента импульса.

Момент импульса характеризует количество вращательного движения. Величина, зависящая от того, сколько массы вращается, как она распределена относительно оси вращения и с какой скоростью происходит вращение.

Замечание: момент импульса относительно точки — это псевдовектор, а момент импульса относительно оси — скалярная величина.

Следует учесть, что вращение здесь понимается в широком смысле, не только как регулярное вращение вокруг оси. Например, даже при прямолинейном движении тела мимо произвольной воображаемой точки, оно также обладает моментом импульса. Наибольшую роль момент импульса играет при описании собственно вращательного движения.

Момент импульса замкнутой системы сохраняется.

Момент импульса   частицы относительно некоторого начала отсчёта определяется векторным произведением ее радиус-вектора и импульса:

 

 

где  — радиус-вектор частицы относительно выбранного неподвижного в данной системе отсчета начала отсчёта,   — импульс частицы.

В системе СИ момент импульса измеряется в единицах джоуль-секунда; Дж·с.

Моментом импульса вращающегося тела называют физическую величину, равную произведению момента инерции тела I на угловую скорость ω его вращения. Момент импульса обозначается буквой L:

L = Iω

Поскольку   уравнение вращательного движения можно представить в виде:

Окончательно будем иметь:

Это уравнение, полученное здесь для случая, когда I = const, справедливо и в общем случае, когда момент инерции тела изменяется в процессе движения.

Если суммарный момент M внешних сил, действующих на тело, равен нулю, то момент импульса L = Iω относительно данной оси сохраняется:

ΔL = 0, если M = 0.

Следовательно,

L = Iω = const.

Это и есть закон сохранения момента импульса. Иллюстрацией этого закона может служить неупругое вращательное столкновение двух дисков, насажанных на общую ось

Неупругое вращательное столкновение двух дисков.

 Закон сохранения момента импульса:  = (  +


Дата добавления: 2018-08-06; просмотров: 9845; Мы поможем в написании вашей работы!

Поделиться с друзьями:






Мы поможем в написании ваших работ!