Второй признак сравнения знакоположительных рядов



 

Теорема. Если отличен от нуля конечный предел отношения соответствующих членов двух знакоположительных рядов  и , т. е. , то данные ряды сходятся или расходятся одновременно.

Доказательство. По определению предела по Коши на языке e-d существование предела отношения членов рядов означает:

.для любого n>N(e) справедливы неравенства

.

n =1. т. е. .

Тогда для частичных сумм рядов можно записать

, где , ..

1. Ряд  сходится. . , можно записать ,

 т. е. последовательность частичных сумм ряда ,являющаяся монотонно возрастающей, ограничена, ряд сходится.

2. Ряд  расходится, т. е. . Тогда:

. Отсюда - предел частичных сумм второго ряда также неограничен

. Следовательно, ряд  расходится.

 

Дифференцирование интегралов, зависящих от параметра. Формула Лейбница.Гамма-функция

Пусть в определенном интеграле пределы интегрирования и подынтегральная функция зависят от некоторого параметра a, т.е. интеграл имеет вид . Требуется найти производную интеграла  по этому параметру a. Будем считать, что функции ,  - дифференцируемые функции по a. Рассмотрим отдельно три случая, когда в интеграле зависят от параметра либо подынтегральная функция, либо какой-то из пределов интегрирования. 1. Пусть . Найдем Используем теорему Лагранжа о конечном приращении функции, запишем , где . Тогда . Следовательно, . 1.Пусть от параметра зависит верхний предел интегрирования, т. е. . Найдем .По теореме о среднем , где .Тогда . Следовательно,

Если верхний предел интегрирования сложная функция , то производная интеграла найдется как производная сложной функции, т. е. В практических задачах нередко требуется найти производную по x от интеграла . В этом интеграле x под интегралом – это переменная интегрирования, а верхний предел xявляется фактически параметром. Поэтому .3. Если от параметра зависит только нижний предел интегрирования, то переставим верхний и нижний предел интегрирования и получим Используем формулы дифференцирования сложной функции нескольких переменных, получим производную интеграла, зависящего от параметра в общем случае  или Данная формула называется формулой Лейбница. Данный интеграл называется гамма-функцией. Он часто используется в математической статистике и других прикладных разделах высшей математики. Найдем .При применим интегрирование по частям. Получим так как . Таким образом . Получим формулу для нахождения  при n целом. Так .как. , то , ,  и т. д.

 

Билет 19.

1.Условный экстремум функции нескольких переменных. Метод множителей Лагранжа.Найти экстремум функции ,x и yудовлетворяют уравнению .  задает неявно функцию , подставим в ф-циюz, . Находим критические точки (в них производная = 0). , . Решаем систему:

     

 

, , следовательно

, решаем систему вместе с , что образует систему уравнений для нахождения критических точек, которые надо проверить на наличие в них экстремума (достаточный признак). Метод множителей Лагранжа.Левые части уравнения – частые производные ф-ции: (ф-ция Лагранжа). Система для нахождения крит.т.:

 

 ,  (в случае n переменных):

 

Ф-ция Лагранжа: .

 

,крит. Т. .


Дата добавления: 2018-08-06; просмотров: 309; Мы поможем в написании вашей работы!

Поделиться с друзьями:






Мы поможем в написании ваших работ!