Отыскание левосторонней и двусторонней критических областей



Отыскание левосторонней и двусторонней критических областей сводится (так же, как и для правосторонней) к нахождению соответствующих критических точек.

Левосторонняя критическая область определяется неравенством K < kкр . Критическую точку находят исходя из требования, чтобы при справедливости нулевой гипотезы вероятность того, что критерий примет значение, меньшее kкр, была равна принятому уровню значимости:

Р(К > kкр) = a.

Двусторонняя критическая область определяется (см. § 4) неравенствами К < k1 , К > k2. Критические точки находят исходя из требования, чтобы при справедливости нулевой гипотезы сумма вероятностей того, что критерий примет значение, меньшее k1 или большее k2, была равна принятому уровню значимости:

P(K < k1) + P(K < k2) =a.     (*)

Ясно, что критические точки могут быть выбраны бесчисленным множеством способов. Если же распределение критерия симметрично относительно нуля и имеются основания выбрать симметричные относительно нуля точки
-kкр и kкр (kкр> 0), то

P(K < -kкр) = P(K > kкр)

Учитывая (*), получим

 P(K > kкр) = a/2.

Это соотношение и служит для отыскания критических точек двусторонней критической области.

 

Дополнительные сведения о выборе критической области.

Мощность критерия

Мы строили критическую область, исходя из требования, чтобы вероятность попадания в нее критерия была равна a при условии, что нулевая гипотеза справедлива. Оказывается целесообразным ввести в рассмотрение вероятность попадания критерия в критическую область при условии, что нулевая гипотеза неверна и, следовательно, справедлива конкурирующая.

Мощностью критерия называют вероятность попадания критерия в критическую область при условии, что справедлива конкурирующая гипотеза. Другими словами, мощность критерия есть вероятность того, что нулевая гипотеза будет отвергнута, если верна конкурирующая гипотеза.

Пусть для проверки гипотезы принят определенный уровень значимости и выборка имеет фиксированный объем. Остается произвол в выборе критической области. Покажем, что ее целесообразно построить так, чтобы мощность критерия была максимальной. Предварительно убедимся, что если вероятность ошибки второго рода (принять неправильную гипотезу) равна b, то мощность равна 1 - b. Действительно, если b - вероятность ошибки второго рода, т. е. события «принята нулевая гипотеза, причем справедлива конкурирующая», то мощность критерия равна 1 - b.

Пусть мощность 1 - b возрастает; следовательно, уменьшается вероятность b совершить ошибку второго рода. Таким образом, чем мощность больше, тем вероятность ошибки второго рода меньше.

Итак, если уровень значимости уже выбран, то критическую область следует строить так, чтобы мощность критерия была максимальной. Выполнение этого требования должно обеспечить минимальную ошибку второго рода, что, конечно, желательно.

Замечание 1. Поскольку вероятность события «ошибка второго рода допущена» равна b, то вероятность противоположного события «ошибка второго рода не допущена» равна 1 - b, т. е. мощности критерия. Отсюда следует, что мощность критерия есть вероятность того, что не будет допущена ошибка второго рода.

Замечание 2. Ясно, что чем меньше вероятности ошибок первого и второго рода, тем критическая область «лучше». Однако при заданном объеме выборки уменьшить одновременно a и b невозможно; если уменьшить a, то b будет возрастать.


ОДНОФАКТОРНЫЙ ДИСПЕРСИОННЫЙ АНАЛИЗ

Сравнение нескольких средних.

Понятие о дисперсионном анализе.

Пусть генеральные совокупности Х1 , Х2 , …, Хр распределены нормально и имеют одинаковую, хотя и неизвестную, дисперсию; математические ожидания также неизвестны, но могут быть различными. Требуется при заданном уровне значимости по выборочным средним проверить нулевую гипотезу
Н0 : М(Х1) = М(Х2) = … = М(Хр)  о равенстве всех математических ожиданий. Другими словами, требуется установить, значимо или незначимо различаются выборочные средние. Казалось бы, для сравнения нескольких средних (р > 2) можно сравнить их попарно. Однако с возрастанием числа средних возрастает и наибольшее различие между ними: среднее новой выборки может оказаться больше наибольшего или меньше наименьшего из средних, полученных до нового опыта. По этой причине для сравнения нескольких средних пользуются другим методом, который основан на сравнении дисперсий и поэтому назван дисперсионным анализом (в основном развит английским статистиком Р. Фишером).

На практике дисперсионный анализ применяют, чтобы установить, оказывает ли существенное влияние некоторый качественный фактор F, который имеет р уровней F1 , F2 , … , Fp   на изучаемую величину X. Например, если требуется выяснить, в какой школе наиболее эффективно проводится изучение иностранного языка, то фактор F - школа, а его уровни – номер школы.

Основная идея дисперсионного анализа состоит в сравнении «факторной дисперсии», порождаемой воздействием фактора, и «остаточной дисперсии», обусловленной случайными причинами. Если различие между этими дисперсиями значимо, то фактор оказывает существенное влияние на X; в этом случае средние наблюдаемых значений на каждом уровне (групповые средние) различаются также значимо.

Если уже установлено, что фактор существенно влияет на X, а требуется выяснить, какой из уровней оказывает наибольшее воздействие, то дополнительно производят попарное сравнение средних.

Иногда дисперсионный анализ применяется, чтобы установить однородность нескольких совокупностей (дисперсии этих совокупностей одинаковы по предположению; если дисперсионный анализ покажет, что и математические ожидания одинаковы, то в этом смысле совокупности однородны). Однородные же совокупности можно объединить в одну и тем самым получить о ней более полную информацию, следовательно, и более надежные выводы.

В более сложных случаях исследуют воздействие нескольких факторов на нескольких постоянных или случайных уровнях и выясняют влияние отдельных уровней и их комбинаций (многофакторный анализ).

Мы ограничимся простейшим случаем однофакторного анализа, когда на X воздействует только один фактор, который имеет р постоянных уровней.


Дата добавления: 2018-04-04; просмотров: 484; Мы поможем в написании вашей работы!

Поделиться с друзьями:






Мы поможем в написании ваших работ!