Экспериментальные измерения



 

Общие сведения

Любому материальному объекту присущи вполне определенные свойства, большинство из которых характеризуется численными ве­личинами. Например, для куска медного провода можно определить следующие величины: диаметр, длину, массу, электропроводность, температурный коэффициент расширения, электрическое сопротив­ление и др. Некоторые свойства объектов и явления природы труднее поддаются количественному описанию. К ним можно отнести, напри­мер, цвет, блеск, способность противостоять многократным изгибам. Однако даже в таких случаях необходимо определить соответствую­щие данным свойствам количественные характеристики, без знания которых невозможно описать достаточно точно исследуемый объект.

Для определения численного значения какого-либо параметра не­обходимо знать, во сколько раз оно больше или меньше эталонной ве­личины.

Операция сравнения определяемой величины для исследуемого объекта с соответствующей величиной эталона называется измерением.

Например, за единицу длины принят эталонный метр – опреде­ленное расстояние между штрихами, нанесенными на стержне из осо­бого стойкого сплава. При измерении массы некоторого тела устанав­ливается, во сколько раз измеряемая масса превосходит массу эталон­ного образца в один килограмм. Разумеется, очень редко пользуются сравнением измеряемых величин с величинами эталонов, хранящихся в государственных метрологических учреждениях. В основном ис­пользуют различного рода измерительные устройства и приборы, тем или иным способом сверенные с эталонами. Это относится в одинако­вой мере как к устройствам и приборам для измерения длины (различ­ные линейки, микрометр, измерительный микроскоп и т. п.), так и к из­мерителям времени, массы, а также электроизмерительным, оптиче­ским и многим другим приборам.

Принято различать два вида экспериментальных измерений – прямые и косвенные. При прямом измерении определяемая величина сравнивается с единицей измерения непосредственно при помощи из­мерительного прибора. Измерение длины рулеткой либо штангенцир­кулем, измерение промежутков времени секундомером, измерение силы тока амперметром и т. п. – все это примеры прямых измерений, при которых измеряемая величина отсчитывается непосредственно по шкале прибора.

При косвенном измерении определяемая величина вычисляется по формуле, включающей результаты прямых измерений. К косвенным измерениям относятся, например, определение площади прямоуголь­ника по измеренным двум его сторонам, определение сопротивления участка цепи по силе тока и напряжению, определение концентрации примесей по интенсивности ее спектральных линий и т. п.

Независимо от способа измерения определение той или иной фи­зической величины сопровождается ошибкой, показывающей, на­сколько искомая величина отличается от ее истинного значения.

 

Ошибки измерений

Никакое измерение нельзя выполнить абсолютно точно. Другими словами, при измерении какой-либо величины любым способом абсо­лютное значение ее недостижимо, а это означает, что результат изме­рения содержит некоторую погрешность – ошибку измерений. Такой вывод следует из одного из положений теории естественнонаучного познания окружающего мира – любое научное знание относительно. Ограниченные возможности измерительных приборов, несовершен­ство органов чувств, неоднородность измерительных объектов, внеш­ние и внутренние факторы, влияющие на объекты и т. п. – вот основ­ные причины недостижимости абсолютного значения измеряемой ве­личины.

Точность измерений возрастает по мере увеличения чувствитель­ности измерительного прибора. Однако при измерении сколь угодно чувствительным прибором нельзя сделать ошибку измерений меньше ошибки измерительного прибора, даже при многократном повторении измерений. Например, если линейка позволяет измерить длину с отно­сительной ошибкой 0,1 %, что соответствует 1 мм на линейке длиной 1 м, то, применяя ее для измерения длины любых объектов, нельзя оп­ределить длину с ошибкой, меньшей 0,1 %. Абсолютное значение яв­ляется идеальным, недостижимым на практике. Чем точнее поставлен эксперимент, чем совершеннее измерительная техника и т. п., тем бли­же измеряемая величина к абсолютной. Одна из важных целей экспериментатора – приблизить получаемые экспериментальные данные к их абсолютным величинам.

В зависимости от причин, порождающих ошибки, различают сис­тематические, случайные и приборные ошибки. К ним не относят гру­бые ошибки, вызванные невниманием при снятии показаний прибо­ров, неправильной записью измеряемых данных, ошибками при вы­числениях и т. п. Такие ошибки не подчиняются какому-либо закону и устраняются при промежуточной оценке результатов измерений.

Систематические ошибки возникают при многократном повторе­нии измерений и обусловливаются неисправностью измерительных приборов, неточностью методов измерений и использованием для рас­четов неточных данных. Если, например, стрелка амперметра изогну­та или смещен «нуль» прибора, то при измерении таким прибором все­гда получится ошибочная величина. Сколько бы раз ни проводились измерения, как бы тщательно ни записывались показания прибора, в измерениях всегда будет одна и та же ошибка. Для устранения систе­матической ошибки, вызванной неисправностью прибора, необходи­мо ввести соответствующие поправки, полученные при сравнении по­казаний неисправного и исправного приборов. Систематическая ошибка всегда увеличивает или уменьшает результат измерений на одну и ту же величину. Следовательно, даже полное совпадение ряда измеренных величин не является признаком отсутствия систематиче­ской ошибки – ее нельзя выявить при повторных измерениях.

Сущность систематических ошибок, обусловленных методом из­мерений, можно пояснить на примере определения электрического со­противления, при котором возникает систематическая ошибка, вы­званная неучтенным электрическим сопротивлением соединительных проводов в цепи измерительной схемы. Чтобы ее устранить, нужно ввести поправки на неучтенное сопротивление.

Для устранения систематических ошибок требуются тщательная проверка всех измерительных приборов и кропотливый анализ мето­дов измерений.

Случайные ошибки возникают случайно при совокупном действии многих факторов и остаются при устранении грубых и систематиче­ских ошибок. Можно назвать многочисленные объективные и субъек­тивные причины случайных ошибок: изменение напряжения в сети при электрических измерениях, неоднородность вещества при определении плотности, изменение условий окружающей среды (температу­ры, давления), и др. Подобные причины приводят к тому, что несколь­ко измерений одной и той же величины дают различные результаты. К случайным ошибкам относятся и те, причины которых неизвестны или неясны.

Вследствие непредсказуемых обстоятельств случайные ошибки могут как увеличивать, так и уменьшать значения измеряемой величи­ны. Обычно случайные ошибки не устраняются – их нельзя избежать в каждом из результатов измерений.

Случайные ошибки подчиняются законам теории вероятностей, установленным для случайных явлений. С помощью методов теории вероятностей можно уменьшить влияние случайных ошибок на ре­зультат эксперимента. Широко известен нормальный закон распреде­ления случайных ошибок (закон Гаусса), из которого следуют важные выводы:

• малые по модулю ошибки встречаются чаще;

• равные по модулю случайные ошибки разных знаков встречают­ся одинаково часто;

• с увеличением точности (уменьшением интервала разброса из­меренных значений) плотность случайных ошибок возрастет.

Теория случайных ошибок позволяет определить наиболее вероят­ные значения измеряемых величин и возможные отклонения от них. Однако следует отметить, что выводы теории вероятностей справед­ливы только для достаточно большого числа случайных событий. По­этому, строго говоря, применение теории случайных ошибок целесо­образно только к сравнительно большому числу измерений. На прак­тике же часто ограничиваются 5–10 измерениями, хотя следует пом­нить, что увеличение числа измерений уменьшает влияние случайных ошибок. В каждом конкретном случае для получения заданной точно­сти устанавливается необходимое число измерений.

Приборные ошибки обусловливаются конструктивными особен­ностями измерительных приборов. Приборную ошибку иногда назы­вают точностью измерительного прибора. По величине ошибок, кото­рые могут вносить при измерении электроизмерительные приборы, различают семь классов точности приборов, которые обозначаются цифрами: 0,1; 0,2; 0,5; 1,0; 1,5; 2,5; 4,0. Цифра класса точности пока­зывает величину относительной ошибки в процентах при отклонении стрелки прибора до последнего деления шкалы. Абсолютная ошибка прибора при любом отклонении стрелки одинакова. Поэтому при меньших отклонениях стрелки относительная ошибка больше. Напри­мер, если у прибора класса точности 0,5 вся шкала содержит 150 деле­ний, то относительная ошибка при отклонении на все 150 делений составляет 0,5%, а абсолютная ошибка равна 0,75 деления. При отклоне­нии стрелки на 25 делений абсолютная ошибка та же – 0,75 деления, а относительная ошибка – 3 %. Для получения возможно меньших относительных ошибок при пользовании измерительными приборами необходимо добиваться достаточно большого отклонения стрелки, не меньше, чем на половину шкалы. Для этого нужно выбирать прибор с достаточно высокой чувствительностью или переходить к меньшим пределам измерений многопредельного прибора.

 


Дата добавления: 2015-12-21; просмотров: 35; Мы поможем в написании вашей работы!

Поделиться с друзьями:






Мы поможем в написании ваших работ!