Проблемы с классической теорией



 

Каким же образом выяснилось, что классическая физика не дает истинного описания нашего мира? Основной источник таких сведений — эксперимент. Квантовая теория не была всего лишь выдумкой теоретиков. Несмотря на огромное внутреннее сопротивление, они были вынуждены прийти к этому странному и во многом философски неудовлетворительному взгляду на окружающий нас мир. А произошло это потому, что классическая теория, несмотря на свое величие, столкнулась с серьезными трудностями. Главной из них было сосуществование физических объектов двух видов: частиц , описывающихся конечным числом параметров (шестью — тремя координатами и тремя компонентами импульсов), и полей , имеющих бесконечно большое число параметров. Такое деление в действительности оказывается физически непоследовательным. Для того, чтобы система частиц и полей пришла в состояние равновесия (или «полного покоя»), вся ее энергия должна перейти от частиц к полю. Это — проявление так называемого принципа «равномерного распределения энергии»: в равновесном состоянии вся энергия поровну распределяется между всеми степенями свободы системы. Так как поля обладают бесконечно большим числом степеней свободы, то на долю несчастных частиц вообще ничего не остается!

В этом случае классический атом был бы нестабилен, ибо движение его частиц полностью трансформировалось бы в волновые моды поля. Напомню, что в 1911 году британский физик-экспериментатор новозеландского происхождения Эрнест Резерфорд предложил модель атома, напоминающую солнечную систему. В центре такого атома подобно маленькому солнцу располагалось ядро, а вокруг него подобно планетам обращались электроны, удерживаемые на своих орбитах электромагнитными силами вместо гравитации. Фундаментальная и на первый взгляд неразрешимая проблема состояла в том, что в соответствии с уравнениями Максвелла электрон должен был за долю секунды упасть на ядро по спиральной траектории, непрерывно излучая при этом электромагнитные волны, интенсивность которых за такое малое время достигала бы бесконечной величины. Но ничего подобного не наблюдалось! То, что происходило в действительности , было необъяснимо с точки зрения классической теории. Атомы могли излучать электромагнитные волны (свет) только определенного набора частот, в виде четких спектральных линий (рис. 6.1). Более того, эти частоты удовлетворяли «безумным» правилам[139], не имеющим под собой никакого основания в классической теории.

 

Рис. 6.2. Расхождение между интенсивностью излучения нагретого тела («абсолютно черного тела»), вычисленной в рамках классической теории, и наблюдаемой интенсивностью привели Планка к началам квантовой теории

 

Одним из проявлений такой нестабильности системы полей и частиц стало явление, известное как «излучение абсолютно черного тела». Представьте себе объект, нагретый до определенной температуры, в котором электромагнитное излучение находится в тепловом равновесии с частицами. В 1900 году Рэлей и Джинс теоретически показали, что в этом случае вся энергия частиц должна быть без остатка «высосана» полем! Этот физически абсурдный результат получил название «ультрафиолетовой катастрофы», когда энергия безостановочно перетекает во все более и более высокочастотные колебания поля, в то время как в действительности природа никогда не ведет себя столь расточительно. Наблюдения показали, что энергия низкочастотных колебаний поля действительно соответствует предсказанию Рэлея и Джинса, но в высокочастотной части спектра (где ими была предсказана «ультрафиолетовая катастрофа») она не возрастает  бесконечно, а спадает до нуля. Максимальное значение энергии при данной температуре приходится на определенную частоту или цвет (см. рис. 6.2). Хорошо знакомыми примерами этого могут служить красный цвет нагретой кочерги или желтобелый цвет раскаленного Солнца.

 

Рис. 6.1. Атомы нагретого вещества испускают свет, который обычно имеет лишь очень определенные частоты. С помощью призмы различные частоты можно разделить и получить характерные для атомов спектральные линии

 

 

Начало квантовой теории

 

Как же разрешить все эти загадки? Очевидно, что исходную ньютоновскую схему частиц-корпускул необходимо дополнить максвелловским полем. Можно ли встать на противоположную точку зрения и предположить, что мир построен только из полей, а частицы представляют собой не что иное, как небольшие «сгустки» поля определенного вида? Этот подход имеет свои трудности, ибо такие частицы могли бы непрерывно изменять свою форму, извиваться и совершать колебания бесконечно большим числом способов. Но ничего подобного в действительности не наблюдается. В реальном мире все частицы одного вида, по-видимому, идентичны . Например, любые два электрона тождественны. Даже атомы и молекулы могут изменять свои конфигурации только дискретно[140]. Если частицы — это всего лишь поля, то необходимо ввести в теорию нечто новое, что заставило бы их иметь дискретные характеристики.

В 1990 году блестящий, но осторожный немецкий физик Макс Планк выдвинул революционную идею для подавления высокочастотных мод излучения «абсолютно черного тела». Идея состояла в том, что излучение и поглощение электромагнитного поля может происходить только «квантами», энергия Е  которых связана с частотой v  следующим соотношением:

E  = hv 

где h  — новая фундаментальная постоянная природы, известная как постоянная Планка. Самое удивительное, что эта «бунтарская» идея позволила Планку достичь теоретического согласия с наблюдаемой зависимостью интенсивности излучения «абсолютно черного тела» от частоты (закон излучения Планка ). (По современным данным постоянная Планка очень мала и составляет около 6,6 х 10-34 Дж/с.) Смелая гипотеза Планка стала первым проблеском квантовой теории, но это событие не привлекло к себе внимания физиков до тех пор, пока Эйнштейн не выдвинул еще одну поразительную идею о том, что электромагнитное поле не только излучается, но и существует в виде таких дискретных порций. Таким образом, согласно Эйнштейну (и Ньютону, который высказывал аналогичное утверждение за два столетия раньше) свет представляет собой поток частиц ! Вспомним, что в начале XIX века блестящий теоретик и экспериментатор Томас Юнг наглядно продемонстрировал волновую природу света, а Максвелл и Герц теоретически показали, что свет  представляет собой колебания электромагнитного поля.

Каким образом свет может быть одновременно и частицами, и волнами? Ведь корпускулярная и волновая концепции представляются полностью противоположными. Тем не менее, одни экспериментальные факты явно указывают на то, что свет — это поток частиц, а другие на то, что свет — это волны. В 1923 году французский аристократ и проницательный физик маркиз Луи де Бройль продвинулся в этом вопросе еще дальше, высказав в своей докторской диссертации (которая снискала одобрение Эйнштейна!) идею о том, что частицы материи  иногда ведут себя как волны! Частота v  волны де Бройля любой частицы с массой m  также удовлетворяет соотношению Планка. Комбинируя это с формулой Эйнштейна Е  = m c 2 , можно найти связь частоты v  с массой m :

hv  = Е  = 2 .

Таким образом, согласно идее де Бройля, раздельное существование частиц и полей, бывшее в почете у классической теории, отвергается  природой! Действительно, все, что осциллирует с частотой v , может существовать только в виде дискретных порций с массой hv /c 2 . Природа каким-то образом «умудряется» построить непротиворечивый мир, в котором частицы и осцилляции поля суть одно и то же! Или, точнее, мир природы состоит из каких-то более тонких составляющих, а представления о «частице» и «волне» лишь частично отражают реальность.

Еще один яркий пример проявления соотношения Планка нашел в 1913 году Нильс Бор — датский физик и выдающийся мыслитель XX века. Правила Бора требовали, чтобы угловой момент  (гл.6 «Уравнение Шредингера; уравнение Дирака») электрона на ядерной орбите мог принимать только значения, кратные величине h /2π , для которой Дирак ввел более удобное обозначение ħ :

ħ  = h /2π 

Таким образом, разрешены только следующие значения углового момента (относительно любой оси),

0 , ħ , 2ħ , 3ħ , 4ħ …

С учетом этого нововведения «планетарная» модель атома позволила с большой точностью вычислить частоты энергетических уровней и объяснить те «безумные» правила, которым в действительности следует природа.

Несмотря на поразительный успех, блестящая гипотеза Бора была только временной схемой, своего рода «новой заплатой на старые меха» и получила название «старой квантовой теории». Сегодняшняя квантовая физика произошла из двух независимых схем, предложенных позже немцем Вернером Гейзенбергом и австрийцем Эрвином Шредингером («матричной механики» в 1925 году и «волновой механики» в 1926 году, соответственно). Сначала две эти две схемы казались совершенно различными, но вскоре они были включены в более общую теорию как ее эквивалентные представления. Это было сделано главным образом британским физиком-теоретиком Полем Адриеном Морисом Дираком. В последующих главах мы попытаемся окинуть беглым взглядом квантовую теорию и ее необычные следствия.

 

Эксперимент с двумя щелями

 

Рассмотрим «архетипичный» квантовомеханический эксперимент, в котором пучок электронов, света или любых других «волн-частиц» направляется сквозь две узкие щели на расположенный позади них экран (рис. 6.3).

 

Рис. 6.З. Эксперимент с двумя щелями и монохроматическим светом (Обозначения на рисунке: S  (англ. sourse ) — источник, t  (англ. top ) — верхняя [щель], b  (англ. bottom ) — нижняя [щель]. — Прим. ред .)

 

Для большей конкретности выберем свет и условимся называть квант света «фотоном» согласно принятой терминологии. Наиболее очевидное проявление света как потока частиц (фотонов) наблюдается на экране. Свет достигает экрана в виде дискретных точечных порций энергии, которые всегда связаны с частотой света формулой Планка: Е  = hv . Энергия никогда не передается в виде «половинки» (или иной доли) фотона. Регистрация фотонов представляет собой явление типа «все или ничего». Всегда наблюдается только целое число фотонов.

Но при прохождении через две щели фотоны обнаруживают волновое  поведение. Предположим, что сначала открыта только одна щель (а вторая — наглухо закрыта). Пройдя через эту щель, пучок света «рассеивается» (это явление называется дифракцией и является характерным для распространения волн). Пока еще можно придерживаться корпускулярной точки зрения и считать, что расширение пучка обусловлено влиянием краев щели, заставляющем фотоны отклоняться на случайную величину в обе стороны. Когда свет, проходящий через щель, обладает достаточной интенсивностью (число фотонов велико), то освещенность экрана кажется равномерной. Но если интенсивность света уменьшить, то можно с уверенностью утверждать, что освещенность экрана распадется на отдельные пятна — в согласии с корпускулярной теорией. Яркие пятна располагаются там, где отдельные фотоны достигают экрана. Кажущееся равномерным распределение освещенности представляет собой статистический эффект, обусловленный очень большим числом участвующих в явлении фотонов (рис. 6.4).

 

Рис. 6.4. Картина распределения интенсивности на экране, когда открыта только одна щель: наблюдается распределение дискретных крохотных пятнышек

 

(Для сравнения, 60-ваттная электрическая лампа излучает около 100 000 000 000 000 000 000 фотонов в секунду!) При прохождении через щель фотоны действительно отклоняются случайным образом. Причем отклонения на различные углы имеют различные вероятности, что и порождает наблюдаемое распределение освещенности на экране.

Но главная трудность для корпускулярной картины возникает, когда мы открываем вторую щель! Предположим, что свет излучается желтой натриевой лампой, это значит, что он имеет чистый цвет без примеси, или, если воспользоваться физическим термином, свет монохроматический , т. е. имеет одну определенную частоту, или, на языке корпускулярной картины, все фотоны имеют одну и ту же энергию. Длина волны в данном случае составляет около 5 х 10-7 м. Предположим, что щели имеют в ширину около 0,001 мм и отстоят друг от друга на расстояние около 0,15 мм, а экран находится от них на расстоянии около 1 м. При достаточно большой интенсивности света распределение освещенности все еще выглядит равномерным, но теперь в нем имеется некое подобие волнообразности , называемое интерференционной картиной  — на экране примерно в 3 мм от центра наблюдаются полосы (рис. 6.5).

 

Рис. 6.5. Картина распределения интенсивности, когда открыты обе щели: наблюдается волнообразное распределение дискретных пятнышек

 

Открывая вторую щель, мы надеялись увидеть вдвое бо́льшую освещенность экрана (и это, действительно, было бы верно, если рассматривать полную освещенность экрана). Но оказалось, что теперь детальная картина освещенности полностью отлична от той, которая имела место при одной открытой щели. В тех точках экрана, где освещенность максимальна, его интенсивность оказывается не в два , а в четыре раза больше той, что была прежде. В других же точках, где освещенность минимальна, — интенсивность падает до нуля. Точки с нулевой интенсивностью, возможно, и представляют наибольшую загадку для корпускулярной точки зрения. Это те точки, которых фотон мог бы благополучно достичь, если бы открыта была только одна щель. Теперь же, когда мы открыли и вторую щель, неожиданно оказалось, что нечто помешало фотону попасть туда, куда он мог бы попасть прежде. Как могло случиться, что, предоставив фотону альтернативный маршрут, мы в действительности воспрепятствовали его прохождению по любому из маршрутов?

Если в качестве «размера» фотона принять длину его волны, то в масштабе фотона вторая щель находится от первой на расстоянии около 300 «размеров фотона» (а ширина каждой щели составляет около двух длин волн фотона) (рис. 6.6).

 

Рис. 6.6. Щели «с точки зрения» фотона! Разве может быть важно фотону, открыта или закрыта вторая щель, находящаяся на расстоянии около 300 «размеров фотона»?

 

Каким образом фотон, проходя через одну из щелей, «узнает» о том, открыта или закрыта другая щель? На самом деле, в принципе не существует предела для расстояния, на которое могут быть разнесены щели, для того, чтобы произошло явление «гашения или усиления».

Создается впечатление, что когда свет проходит через одну или две щели, он ведет себя как волна , а не как корпускула (частица)! Такое гашение — деструктивная интерференция  — хорошо известное свойство обычных волн. Если каждый из двух маршрутов порознь может быть пройден волной, то когда для нее открыты оба  маршрута, может оказаться, что они взаимно погасят друг друга. На рис. 6.7 показано, как это происходит.

 

Рис. 6.7. Чисто волновая картина позволяет нам осмыслить распределение светлых и темных полос на экране (но не дискретность) на языке интерференции волн

 

Когда какая-то часть волны, пройдя через одну из щелей, встречает часть волны, прошедшую через другую щель, то они усиливают друг друга, если находятся «в фазе» (т. е. если встречаются два гребня или две впадины), или гасят друг друга, если они находятся «в противофазе» (т. е. гребень одной части встречается с впадиной другой). В эксперименте с двумя щелями яркие места на экране возникают там, где расстояния до щелей отличаются на целое  число длин волн так, что гребни приходятся на гребни, а впадины — на впадины, а темные места возникают там, где разность этих расстояний равна полуцелому числу длин волн так, что гребни встречаются с впадинами, а впадины — с гребнями.

Нет ничего загадочного в поведении обычной макроскопической классической волны, проходящей одновременно через две щели. Волна в конечном счете представляет собой всего лишь «возмущение» либо некоторой непрерывной среды (поля), либо некоторого вещества, состоящего из мириад крохотных точечных частиц. Возмущение может частично пройти через одну щель, частично через другую щель. Но в корпускулярной картине ситуация иная: каждый отдельный фотон сам по себе ведет себя, как волна! В некотором смысле каждая частица проходит сразу через обе щели  и интерферирует сама с собой ! Ибо, если значительно уменьшить полную интенсивность света, то можно гарантировать, что вблизи щелей будет находиться не более одного фотона одновременно. Явление деструктивной интерференции, когда два альтернативных маршрута каким-то образом «ухитряются» исключить друг друга из числа реализованных возможностей, есть нечто, применимое к одному  фотону. Если для фотона открыт только один из двух маршрутов, то фотон может пройти по нему. Если открыт другой маршрут, то фотон может пройти второй вместо первого маршрута. Но если перед фотоном открыты оба  маршрута, то эти две возможности чудесным образом исключают друг друга, и оказывается, что фотон не может пройти ни по одному из маршрутов!

Настоятельно советую читателю остановиться и вдуматься в смысл этого необычного факта. Дело не в том, что свет ведет себя в одних случаях как волны, а в других как частицы. Каждая частица в отдельности сама по себе ведет себя, как волна; и различные альтернативные возможности, открывающиеся перед частицей, иногда могут полностью уничтожать друг друга!

Действительно ли фотон расщепляется на два и частично проходит через одну щель, а частично — через другую? Большинство физиков будут возражать против такой постановки вопроса. По их мнению оба маршрута, открытых перед частицей, должны вносить вклад в конечный результат, они — всего лишь дополнительные способы движения, и не следует думать, будто частица должна расщепиться на две, чтобы пройти через щели. В подтверждение той точки зрения, что частица не проходит частично через одну щель и частично — через другую, можно рассмотреть видоизмененную ситуацию, в которой около одной из щелей помещен детектор частиц . В этом случае фотон (или любая другая частица) всегда появляется как единое целое, а не как некоторая доля целого: ведь наш детектор регистрирует либо целый фотон, либо полное отсутствие фотонов. Однако, если детектор расположен достаточно близко к одной из щелей, чтобы наблюдатель мог различить , через какую из них прошел фотон, то интерференционная картина на экране исчезает. Для того, чтобы имела место интерференция, по-видимому, необходимо «отсутствие знания» относительно того, через какую из щелей «действительно» прошла частица.

Чтобы получить интерференцию, обе  альтернативы должны дать свой вклад, иногда «суммируясь», усиливая друг друга в два раза больше, чем можно было бы ожидать, а иногда «вычитаясь», чтобы загадочным образом погасить друг друга. Фактически же согласно правилам квантовой механики в действительности происходит нечто еще более загадочное! Конечно, альтернативы могут суммироваться (самые яркие точки на экране), альтернативы могут вычитаться (темные точки), но они также могут образовывать и такие странные комбинации, как:

альтернатива А  + i  х альтернатива В ,

где i  — «квадратный корень из минус единицы» (i  = √ -1  ), с которым мы уже встречались в главе 3 (в точках на экране с промежуточной интенсивностью освещенности). В сущности любое комплексное число может играть роль коэффициента в «комбинации альтернатив»!

Возможно, читатель уже вспомнил высказанное мной в главе 3 предупреждение о том, что комплексные числа играют «абсолютно фундаментальную роль в структуре квантовой механики». Комплексные числа — не просто математические диковинки. Физиков вынудили обратить на них внимание убедительные и неожиданные экспериментальные факты. Чтобы понять квантовую механику, мы должны поближе познакомиться с языком комплекснозначных весовых коэффициентов. Давайте же рассмотрим, к каким это приводит последствиям.

 

Амплитуды вероятностей

 

Выбор фотона в приведенных выше рассуждениях не был продиктован ничем особенным. С тем же успехом для этого подошли бы электроны, любые другие частицы или даже целые атомы. Правила квантовой механики, насколько можно судить, утверждают, что и крикетные шары, и слоны должны вести себя описанным выше странным образом, где различные альтернативные возможности могут каким-то образом образовывать «суммы» состояний с комплексными весами! Однако нам никогда не приходилось реально видеть крикетные шары или слонов в виде столь странных «сумм». Почему? Это трудная и к тому же противоречивая тема, которую я не хотел бы сейчас затрагивать. А пока же мы просто допустим в качестве рабочего правила, что существуют два различных возможных уровня описания физической реальности, которые мы называем квантовым уровнем  и классическим уровнем . Мы будем использовать эти странные комбинации состояний с комплекснозначными весами только на квантовом уровне. Крикетные же шары и слоны будут у нас объектами классического уровня.

Квантовый уровень — это уровень молекул, атомов и других субатомных частиц. Обычно считается, что это уровень явлений очень «малого масштаба», но эта «малость» не относится к физическим размерам. Мы увидим, что квантовые эффекты могут происходить на расстояниях многих метров или даже световых лет. Правильнее было бы считать, что нечто принадлежит «квантовому уровню», если это связано лишь с очень малыми изменениями энергии. (В дальнейшем я попытаюсь уточнить, о чем идет речь, главным образом в главе 8,) Классический уровень — это «макроскопический» уровень, о котором мы имеем более непосредственные знания. Это — тот уровень, для которого верны наши обыденные представления о «происходящем», и где можно использовать наше обычное понятие вероятности. Мы увидим, что комплексные числа, которые нам приходится использовать на квантовом уровне, тесно связаны с классическими вероятностями. Но они не тождественны друг другу, и поэтому чтобы освоиться с этими комплексными числа, было бы очень полезно вспомнить для начала, как ведут себя классические вероятности.

Рассмотрим некую неопределенную классическую систему, то есть систему, о которой мы не знаем, в каком из двух альтернативных состояний А  или В  она находится. Такую систему можно было бы рассматривать как «взвешенную» комбинацию альтернатив А  и В :

р  х альтернатива А  + q  х альтернатива В ,

где р  — вероятность события A , a q  — вероятность события В . (Напомним, что вероятность — действительное число, принимающее значение от 0  до 1 . Вероятность 1  означает, что событие «заведомо произойдет», а вероятность 0  означает, что событие «заведомо не произойдет».) Если А  и В  — единственно возможные альтернативы, то сумма их вероятностей должна быть равна 1 :

p  + q   = 1 .

Если же существуют и другие возможности, то эта сумма должна быть меньше 1 . В этом случае выражение р: q  дает отношение вероятности события А  к вероятности события В . А сами вероятности событий А  и В  (при условии, что имеются только эти две альтернативы) были бы равна, соответственно, p /(p  + q ) и q /(p  + q ) — Мы можем использовать такую интерпретацию и в том случае, когда сумма р  + q  больше 1 . (Такой способ вычисления вероятностей мог бы быть полезным, например, если бы мы многократно повторяли эксперимент, а р  было бы количеством событий A , a q  — количеством событий В ). Мы будем говорить, что числа р  и q  нормированы , если р  + q  = 1 , в этом случае они дают сами вероятности, а не только отношения вероятностей.

Подобным образом мы поступаем и в квантовой физике, с тем лишь исключением, что в квантовой физике р  и q  — комплексные числа, в силу чего я предпочитаю их обозначить ω  и z , соответственно:

ω  х альтернатива А  + z  х альтернатива В .

Как же теперь нам истолковать ω  и z ? Несомненно, что они не являются обычными вероятностями (или отношениями вероятностей), так как каждое из чисел ω  и z  может по отдельности быть отрицательным или комплексным. Но во многих отношениях они ведут себя подобно вероятностям. Числа той z (при соответствующей нормировке — см. далее) принято называть амплитудами вероятности , или просто амплитудами . Более того, часто используют терминологию, которая наводит на мысль о вероятностях, например: «Существует амплитуда ω  того, что произойдет событие А , и амплитуда z  того, что произойдет событие В». Амплитуды еще не вероятности, но на миг попытаемся сделать вид, будто они являются вероятностями или, точнее, аналогами вероятностей на квантовом уровне.

Как проявляются обычные вероятности? Полезно представить себе какой-нибудь макроскопический объект, например, шарик, прошедший сквозь одну из двух щелей к стоящему позади экрану (как в описанном выше эксперименте с двумя щелями (см. рис. 6.3), но вместо прежнего фотона теперь фигурирует классический макроскопический шарик). Должна существовать некоторая вероятность P (s , t ) того, что отправившись из точки s  шарик достигнет верхнего отверстия t , и некоторая вероятность P (s , t ) того, что шарик достигнет нижнего отверстия b . Кроме того, если мы выберем некоторую точку р  на экране, то должна существовать некоторая вероятность P (t , р ) того, что шарик достигнет точки р  на экране, пройдя через t , и некоторая вероятность Р (b , р ) того, что он что шарик достигнет точки р , пройдя через b . Если открыто только отверстие t , то для того, чтобы найти вероятность того, что шарик действительно достигает точки р , пройдя через отверстие t , мы умножаем вероятность того, что он попадает из точки s  в t , на вероятность того, что он попадает из t  в точку р :

P (s , t ) х P (t , p ).

Аналогично, если открыто только нижнее отверстие, то вероятность того, что шарик попадает из s  в р , равна

P (s , b) х Р (b , р ).

Если открыты оба  отверстия, то вероятность того, что шарик попадает из s  в точку р  через t , по-прежнему равна первому произведению P(s , t ) х P (t , р ) (так, как если бы было открыто только отверстие t ), и вероятность того, что шарик попадает из точки s  в точку р  через b , по-прежнему равна P (s , b ) х Р (b , р ). Поэтому полная  вероятность P (s , р ) того, что шарик, побывав в точке р , попадет в точку s , равна сумме двух приведенных выше вероятностей:

P (s , р ) = P (s , t ) х P (t , р ) + P (s , b ) x P (b , p ).

На квантовом уровне эти правила остаются в точности такими же, с тем лишь исключением, что теперь роль вероятностей, с которыми мы имели дело в классическом случае, должны играть эти странные комплексные амплитуды . Например, в рассмотренном выше эксперименте с двумя щелями мы имеем амплитуду A (s , t ) того, что фотон достигнет верхней щели t  из источника s , и амплитуду A (t , р ) того, что фотон достигнет точки р  на экране из щели t , и, перемножив эти амплитуды, мы получим амплитуду

A (s , t ) х A (t , p )

того, что фотон достигнет точки р  на экране через щель t . Как и в случае вероятностей, это — правильная амплитуда в предположении, что верхняя щель открыта независимо от того, открыта или не открыта нижняя щель b . Аналогично, в предположении, что открыта нижняя щель b , мы получаем амплитуду

A (x , b ) х А (b , р )

того, что фотон достигнет точки р  на экране через щель b  (независимо от того, открыта или не открыта верхняя щель t ). Если же открыты обе щели, то мы получаем полную амплитуду

A (s , р ) = A (s , t ) х A (t , р ) + A (s , b ) х A (b , р )

того, что фотон попадает в точку р  из точки s .

Все это очень мило, но совершенно бесполезно, пока мы не знаем, как интерпретировать амплитуды, когда квантовый эффект увеличивается до классического уровня. Мы могли бы, например, поместить детектор фотонов, или фотоячейку в точке р , что дало бы нам способ увеличения события, происходящего на квантовом уровне, — прибытия фотона в точку р  — до события, различимого на классическом уровне, скажем, громкого «щелчка». (С таким же успехом можно было бы взять в качестве экрана фотопластинку, на которой фотон оставляет видимое пятнышко, но для большей доходчивости мы все же воспользуемся фотоячейкой, издающей при срабатывании звуковой сигнал.) Должна существовать реальная вероятность того, что произойдет восприятие звукового «щелчка», а не одной из этих загадочных «амплитуд»! Как нам перейти от амплитуд к вероятностям, когда мы переходим с квантового уровня на классический? Оказывается, что для этого существует очень красивое, но удивительное правило.

Правило это состоит в том, что для получения классической вероятности, необходимо взять квадрат модуля квантовой комплексной амплитуды. Что такое «квадрат модуля»? Напомним как изображаются комплексные числа на плоскости Аргана (глава 3, с. 84). Модуль |z | комплексного числа z  есть просто расстояние от начала координат (т. е. от точки 0 ) до точки, изображающей число z . Квадрат модуля |z |2  — просто квадрат этого числа. Таким образом, если

z  = х  + iy ,

где x  и у  — действительные числа, то (по теореме Пифагора, так как отрезок прямой, соединяющий точки 0  и z , служит гипотенузой прямоугольного треугольника с катетами х  и у ) квадрат модуля равен

|z |2  = х 2 + у 2 .

Заметим, что для того, чтобы это выражение было настоящей «нормированной» вероятностью, значение |z |2  должно быть заключено между 0  и 1 . Это означает, что для того, чтобы быть надлежащим образом нормированной амплитудой, точка z  на плоскости Аргана должна лежать где-то внутри единичной окружности (рис. 6.8).

 

Рис. 6.8. Амплитуда вероятности представлена как точка z  внутри единичной окружности на плоскости Аргана. Квадрат расстояния |z |2  от центра может стать действительной вероятностью, если эффекты увеличены до классического уровня

 

Однако иногда возникает необходимость рассматривать комбинации

ω  х альтернатива А  + z  х альтернатива В ,

где ω  и z  — всего лишь пропорциональны амплитудам вероятностей и поэтому не должны лежать внутри единичной окружности. Условие их нормированности (и, следовательно, того, что они дают настоящие амплитуды вероятностей) заключается в том, что сумма квадратов их модулей должна быть равна единице:

|ω |2  + |z |2  = 1 .

Если числа ω  и z  не удовлетворяют этому условию нормировки, то настоящими амплитудами вероятностей альтернатив А  и В , соответственно, служат величины

 

 

которые лежат внутри  единичной окружности.

Теперь мы видим, что амплитуда вероятности в конечном счете представляет собой аналог не настоящей вероятности, а скорее «комплексного квадратного корня» из вероятности. Что происходит с ней, когда эффекты квантового уровня увеличиваются настолько, что достигают классического уровня? Напомним, что, манипулируя с вероятностями и амплитудами, мы иногда сталкивались с необходимостью производить их умножение и сложение. Прежде всего заметим, что операция умножения не сопряжена с какими-либо проблемами при переходе от квантовых правил к классическим. Происходит это вследствие замечательного математического факта: квадрат модуля произведения двух комплексных чисел равен произведению квадратов модулей каждого из чисел:

|zω |2  = |z |2 |ω |2 .

(Это свойство непосредственно следует из геометрического смысла произведения двух комплексных чисел, приведенного в главе 3, но на языке действительной и мнимой частей z  = х  +  , ω  = u +iv ; это — прекрасное маленькое чудо. Проверьте сами!)

Из этого факта следует, что если в эксперименте с двумя щелями для частицы существует только один маршрут (открыта только одна щель, например t ), то рассуждения можно строить «классически», и вероятности получатся одними и теми же, независимо от того, наблюдаем ли мы за прохождением частицы в промежуточных точках ее пути (в щели t )[141]. А квадраты модулей можно будет взять на любой стадии наших вычислений, например,

|A (s , t )|2  х |A (t , p )|2 = |A (s ,t ) х A (t ,p )|2 .

Ответ — результирующая вероятность — получится одним и тем же.

Но если перед частицей открыт более чем один маршрут (например, если открыты обе щели), то необходимо образовывать сумму , и здесь-то и начинают обнаруживаться характерные особенности квантовой механики. Когда мы образуем квадрат модуля суммы ω  + z  двух комплексных чисел ω  и z , мы обычно не получаем только лишь сумму квадратов модулей этих чисел; существует дополнительный «поправочный член»:

|ω  + z |2  = |ω |2  + |z |2  + 2 |ω ||z | cosθ ,

где θ  — угол, образуемый направлениями на точки z  и ω  из начала координат на плоскости Аргана (рис. 6.9).

 

 

(Напомним, что косинус угла есть отношение «прилежащий к углу катет/гипотенуза» для прямоугольного треугольника. Пытливый читатель, незнакомый с этой формулой, может попытаться самостоятельно вывести ее, используя геометрию, изложенную в главе 3. В сущности эта формула есть не что иное, как слегка «замаскированное» хорошо известное «правило косинуса»!) Именно поправочный член 2 |ω ||z |cosθ  описывает квантовую интерференцию между квантовомеханическими альтернативами. Значение cosθ  заключено между -1  и 1 . При θ  =0 ° мы имеем cosθ   =1 , и две альтернативы усиливают друг друга так, что полная вероятность оказывается больше суммы отдельных вероятностей. При θ  = 180 ° мы имеем cosθ  = -1 , и две альтернативы стремятся погасить друг друга, в результате чего полная вероятность оказывается меньше суммы отдельных вероятностей (деструктивная интерференция). При θ = 90 ° мы имеем cosθ   =0 , и получается ситуация, промежуточная между двумя упомянутыми выше: две вероятности просто суммируются. Для больших или сложных систем поправочные члены обычно «усредняются», так как «среднее» значение cosθ  равно нулю, и мы получаем обычные правила классической вероятности! Но на квантовом уровне эти члены описывают важные интерференционные эффекты.

Рассмотрим эксперимент с двумя щелями, когда обе щели открыты. Амплитуда того, что фотон достигает точки р , равна сумме ω  + z , где

ω  = A (s , t ) x A (t ,p ) и z  = A (s , b ) x A (b , p ).

В самых ярких точках экрана имеем: ω  = z  (так что cosθ  = 1 ), откуда

|ω  + z |2  = |2ω |2 = 4 |ω |2 ,

что в 4 раза больше вероятности |ω |2 , когда открыта только верхняя щель, и приводит к увеличению интенсивности потока большого числа фотонов в 4 раза, в полном согласии с экспериментом. В темных точках экрана имеем ω  = — z  (так что cosθ  = -1 ), откуда

|ω  + z |2 = |ω  — ω |2 = 0 ,

т. е. интенсивность равна нулю (деструктивная интерференция!) также в соответствии с наблюдением. Точно посередине между этими точками мы имеем: ω  = iz  или ω  = — iz  (так что cosθ   =0 ), откуда

|ω  + z |2  — |ω  ± iω |2  = |ω |2  + |ω |2  = 2 |ω |2 ,

что дает вдвое бо́льшую интенсивность освещенности по сравнению с освещенностью только при одной щели (как в случае с классическими частицами). В конце следующего раздела мы узнаем, как рассчитывать, где именно расположены яркие, темные точки и точки с промежуточной интенсивностью освещенности.

И в заключение одно замечание. Когда открыты обе щели, амплитуда того, что частица достигнет точки р  через щель t , в самом деле равна ω  = A (s , t ) х A (t , p ), но мы не можем интерпретировать квадрат ее модуля |ω |2  как вероятность того, что частица «действительно» прошла через верхнюю щель, чтобы достигнуть точки р . Такая интерпретация привела бы нас к бессмысленным ответам, в особенности, если точка р  находится в темном месте на экране. Но если мы захотим «зарегистрировать» присутствие фотона в щели t , то усиливая эффект его присутствия (или отсутствия) там до классического уровня, мы можем использовать величину |A (s , t )|2  в качестве вероятности того, что фотон действительно присутствует в щели t . Но такое наблюдение нарушило бы картину распределения волн. Для того, чтобы произошла интерференция, нам необходимо убедиться в том, что прохождение фотона через щели остается на квантовом уровне , так чтобы оба  альтернативных маршрута давали свой вклад и иногда могли гасить друг друга. На квантовом уровне отдельные альтернативные маршруты обладают только амплитудами, но не вероятностями.

 

Квантовое состояние частицы

 

Как выглядит «физическая реальность» на квантовом уровне, где различные «альтернативные возможности», открытые перед системой, должны всегда обладать способностью сосуществовать, образуя суммы со странными комплекснозначными весами? Многие физики впадают в отчаяние при виде такой картины. Вместо этого они призывают рассматривать квантовую теорию только в качестве вычислительной процедуры для расчета вероятностей, а не объективной картины физического мира. Некоторые из них вполне серьезно заявляют, что квантовая теория проповедует невозможность получения объективной картины, по крайней мере той, которая согласуется с физическими фактами. Я же считаю такой пессимизм совершенно необоснованным. Во всяком случае было бы преждевременно на основании сказанного выше принять подобную точку зрения. Позднее мы рассмотрим некоторые из наиболее поразительных следствий квантовых эффектов, что возможно позволит нам понять причины такого отчаяния. Но пока давайте смотреть на вещи более оптимистично и мужественно встретим все, что уготовила нам квантовая теория.

Первым предстанет перед нами квантовое состояние . Попытаемся мысленно представить себе одну-единственную квантовую частицу. Классически, частица определяется своим положением в пространстве, и для того, чтобы узнать, что произойдет с частицей дальше, нам также необходимо знать ее скорость (или, что эквивалентно, ее импульс). Квантовомеханически, любое положение , которое может занимать частица, является лишь одной их возможных «альтернатив» для частицы. Мы уже видели, что все альтернативы должны каким-то образом объединяться вместе с комплекснозначными весами. Набор этих комплекснозначных весов описывает квантовое состояние частицы. Обычно в квантовой теории принято использовать греческую букву ψ  (произносится: «пси») для обозначения такого набора весов. Этот набор весов, рассматриваемый как комплекснозначная функция положения частицы, называется волновой функцией частицы . Для каждого положения х  волновая функция принимает вполне определенное значение ψ (х ) — амплитуду вероятности того, что частица находится в положении х . Мы можем использовать одну букву ψ  для обозначения квантового состояния как единого целого. Я разделяю ту точку зрения, что квантовое состояние ψ  частицы — это и есть ее физически реальное положения в пространстве.

Каким же образом можно наглядно изобразить комплексную функцию ψ  ? Сделать это сразу для всего трехмерного пространства несколько затруднительно, поэтому мы немного упростим задачу и предположим, что наложенные связи позволяют частице двигаться только вдоль одномерной линии — например, оси х  обычной (декартовой) системы координат. Если бы функция ψ  была вещественной, то мы могли бы представить себе ось y , перпендикулярную оси х , и построить график функции ψ  (рис. 6.10а).

 

Рис. 6.10.а) График действительной функции действительной переменной х 

 

Но в данном случае для изображения значения комплексной функции ψ  нам требуется «комплексная ось у » — плоскость Аргана. Для этой цели вообразим, что мы можем использовать два других пространственных измерения: например, у -направление в качестве действительной оси плоскости Аргана, а z -направление — как мнимую ось. Для получения правильной картины волновой функции мы можем изобразить ψ  (х ) (значение функции в точке х ) точкой на этой плоскости Аргана (т. е. на плоскости yz , проходящей через каждую точку оси х ). Когда положение точки х  изменяется, то изменяется также и положение точки на плоскости Аргана. При этом точка описывает некоторую кривую в пространстве, извивающуюся вокруг оси х   (рис. 6.10 b).

 

Рис. 6.10.б) график комплексной функции V  действительной переменной х 

 

Назовем эту кривую ψ — кривой  рассматриваемой частицы. Если бы мы поместили в некоторой точке х  детектор, то вероятность обнаружить частицу в данной точке можно найти, вычислив квадрат модуля амплитуды ψ (х ), т. е.

|ψ (x )|2

равный квадрату расстояния ψ -кривой от оси x [142].

Чтобы изобразить подобным образом волновую функцию, определенную на всем трехмерном физическом пространстве, понадобилось бы пять  измерений: три — для физического пространства и два — для плоскости Аргана в каждой точке, в которой мы строим график функции ψ (х ). Однако наша упрощенная картина еще нам пригодится. Если мы захотим изучить поведение волновой функции вдоль произвольного направления в физическом пространстве, то для этого необходимо просто выбрать ось х  вдоль этой линии, а два других пространственных измерения временно использовать в качестве действительной и мнимой осей на плоскости Аргана. Этот способ поможет нашему осмыслению эксперимента с двумя щелями.

Как я упоминал выше, в классической физике для того, чтобы определить, что будет происходить дальше, необходимо знать скорость (или импульс) частицы. В квантовой механике нам представляется значительная экономия. Волновая функция ψ уже  содержит различные амплитуды для различных возможных импульсов! (Кое-кто из недовольных читателей может возразить, что «самое время» говорить об экономии, если принять во внимание, как сильно нам пришлось усложнить простую классическую картину точечной частицы. Хотя я во многом согласен с таким читателем, я все же советую не отвергать те лакомые кусочки, которые ему преподносят, ибо худшее еще впереди!) Каким образом амплитуды скоростей определяются волновой функцией ψ ? На самом же деле лучше думать в терминах амплитуд импульсов. (Напомним, что импульс, или количество движения, равен скорости, умноженной на массу частицы, см. гл.6 «Уравнение Шредингера; уравнение Дирака») Для этого следует применить к волновой функции ψ  так называемый гармонический анализ . Подробно объяснять здесь, что это такое, было бы неуместно, скажу только, что он тесно связан с тем, что происходит с музыкальными звуками. Волну любой формы можно разложить в сумму различных «гармоник» (отсюда и термин «гармонический анализ»), которые представляют собой чистые тона различной высоты (т. е. с различными частотами). В случае волновой функции ψ  «чистые тона» соответствуют различным возможным значениям импульса, которые может иметь частица, а величина вклада каждого «чистого тона» в ψ  определяет амплитуду соответствующего значения импульса. Сами «чистые тона» называются импульсными состояниями .

Как выглядит импульсное состояние, представленное ψ  — функцией? Оно похоже на кривую, напоминающую по форме штопор , официальное математическое название которой — винтовая линия (рис. 6.11)[143].

 

Рис. 6.11. Импульсное состояние имеет ψ -кривую в форме штопора

 

Штопоры с частыми витками соответствуют большим импульсам, а штопоры, которые едва вращаются, — очень малым импульсам. Существует предельный случай, когда ψ -кривая вообще не делает витков и вырождается в прямую в случае нулевого импульса. В поведении винтовой линии неявно скрыто знаменитое соотношение Планка . Так как энергия Е  всегда пропорциональна частоте v  (Е = hv ), то частые витки означают короткую длину волны, большую частоту и, следовательно, большой импульс и высокую энергию, а редкие витки означают малую частоту и низкую энергию. Если плоскости Аргана ориентированы обычным способом (т. е. когда оси х , у , z  образуют, как описано выше, правую тройку), то импульсы, направленные в положительном направлении оси х , соответствуют правым штопорам (которые обычно и используются).

Иногда квантовые состояния полезно описывать не в терминах обычных волновых функций, как это было сделано выше, а в терминах волновых функций импульсов . Это сводится к рассмотрению разложения волновой функции ψ  по различным импульсным состояниям и построению новой функции ψ′ , зависящей на этот раз не от положения х , а от импульса р ; значение ψ′ (p ) при любом р  задает величину вклада состояния с импульсом р  в ψ -функцию. (Пространство величин р  называется импульсным пространством .) Смысл ψ′  состоит в том, что при каждом конкретном выборе р  комплексное число ψ′ (р ) задает амплитуду того, что частица имеет импульс р .

Существует математическое название для соотношения между функциями ψ  и ψ′ . Каждая из этих функций называется преобразованием Фурье  другой — в честь французского инженера и математика Жозефа Фурье (1768–1830). Я ограничусь здесь лишь несколькими замечаниями по поводу преобразования Фурье. Первое замечание: между ψ  и ψ′  существует замечательная симметрия. Чтобы перейти от ψ назад к ψ′ , мы по существу прибегаем к той же процедуре, которую использовали при переходе от ψ к ψ′ . Теперь ψ′  становится объектом гармонического анализа. «Чистые тона» (т. е. штопоры в пространстве импульсов) на этот раз называются конфигурационными состояниями . Каждое положение х  определяет такой «чистый тон» в пространстве импульсов, а величина такого вклада «чистого тона» в ψ  дает значение ψ (x ).

Конфигурационное состояние соответствует (в терминах обычного пространства) некоторой функции ψ , имеющей острый пик в рассматриваемой точке х , а это значит, что все амплитуды равны нулю, за исключением амплитуды в данной точке. Такая функция называется дельта-функцией  (Дирака), хотя, строго говоря, это — не совсем «функция» в обычном смысле, так как ее значение в точке х  бесконечно велико. Аналогичным образом импульсные состояния (винтовые линии в конфигурационном пространстве) порождают дельта-функции в пространстве импульсов (рис. 6.12). Таким образом, оказывается, что преобразование Фурье винтовой линии есть дельта-функция и наоборот !

 

Рис. 6.12. Дельта-функция в конфигурационном пространстве переходит в штопор в импульсном пространстве и наоборот

 

Описание в терминах конфигурационного пространства полезно всякий раз, когда требуется произвести измерение возможного положения частицы в пространстве, которое сводится к увеличению до классического уровня эффектов различных возможных положений частицы. (Грубо говоря, фотоэлементы и фотографические пластинки осуществляют измерение положения фотонов в пространстве.) Описание на языке импульсного пространства полезно, когда требуется измерить импульс частицы, т. е. увеличить до классического уровня эффекты различных возможных импульсов. (Эффекты отдачи или дифракции на кристаллах могут быть использованы для измерений импульса.) В каждом случае квадрат модуля соответствующей волновой функции (ψ  или ψ′ ) дает искомую вероятность результата производимого измерения.

В заключение этого раздела обратимся еще раз к эксперименту с двумя щелями. Мы узнали, что согласно квантовой механике даже одна частица сама по себе должна обладать волновым поведением. Такая волна описывается волновой функцией ψ . Более всего похожи на волны волновые функции импульсных состояний. В эксперименте с двумя щелями мы рассматривали фотоны с определенной частотой; так что волновая функция фотона состояла из импульсных состояний различных направлений, в которых расстояние между соседними витками штопора — длина волны — было одно и то же на протяжении всей винтовой линии. (Длина волны определяется частотой.)

Волновая функция каждого фотона распространяется первоначально из источника в точке S  и (если мы не следим за прохождением фотона через щели) проходит к экрану через обе щели. Однако только небольшая часть волновой функции проходит через щели, поэтому мы можем мысленно рассматривать щели как новые источники, каждый из которых по отдельности испускает волновую функцию. Эти две части волновой функции интерферируют одна с другой так, что когда они доходят до экрана, в одних его точках они суммируются, а в других погашают друг друга. Чтобы выяснить, где волны суммируются и где гасят друг друга, выберем на экране некоторую точку р  и рассмотрим прямые, проведенные к точке р  от каждой из щелей t  u b . Вдоль отрезка tp  мы имеем одну винтовую линию, а вдоль отрезка   — другую винтовую линию. (Мы также имеем винтовые линии вдоль линий st  и sb , но если предположить, что источник находится на одном и том же расстоянии от обеих щелей, то на пути к щелям винтовые линии успеют совершить одинаковое число витков.) Число витков, которые винтовые линии совершат к тому моменту, когда они достигнут экран в точке р , зависит от длины отрезков tp  и  . Если эти длины отличаются на целое число длин волн, то в точке р  винтовые линии окажутся совмещенными в одном  направлении относительно своих осей (т. е. θ  = 0 °, где θ  определено в предыдущем разделе), так что соответствующие амплитуды сложатся и дадут яркое пятно. Если же эти линии отличаются по длине на целое число длин волн плюс половина длины волны, то в точке р  винтовые линии окажутся совмещенными в противоположных направлениях относительно своих осей (θ  = 180°), поэтому соответствующие амплитуды погасят друг друга, и мы получим темное пятно. Во всех остальных случаях между смещениями винтовых линий в точке р  образуется некоторый угол, поэтому соответствующие амплитуды будут суммироваться некоторым промежуточным образом, и мы получим пятно с промежуточной интенсивностью освещенности (рис. 6.13).

 

Рис. 6.13. Анализ эксперимента с двумя щелями в терминах штопорообразного представления импульсных состояний фотона

 

 

Принцип неопределенности

 

Большинству читателей приходилось слышать о принципе неопределенности Гейзенберга . Согласно этому принципу невозможно одновременно точно измерить (т. е. увеличить до классического уровня) положение и импульс частицы. Хуже того, существует абсолютный предел произведения погрешностей, с которыми могут быть измерены положение и импульс частицы, например, ∆x  и ∆р , определяемый неравенством

∆x ∆р  ≥ ħ .

Эта формула говорит нам, что чем точнее измерено положение х , тем менее точно может быть определен импульс р , и наоборот. Если бы положение было измерено с бесконечной точностью, то импульс стал бы совершенно неопределенным; с другой стороны, если импульс измерен точно, то положение частицы становится полностью неопределенным. Чтобы получить некоторое представление о величине предела, установленного неравенством Гейзенберга, предположим, что положение электрона измерено с погрешностью до нанометра (10-9 м), тогда его импульс стал бы настолько неопределенным, что уже через секунду после измерения бесполезно было бы искать электрон на расстоянии меньше 100 км от того места, где он находился в момент измерения!

Из описаний некоторых измерительных процессов создается впечатление, что это связано с некоторой неточностью, «встроенной» в сам процесс измерения. Согласно этой точке зрения, попытка локализовать электрон в вышерассмотренном эксперименте неизбежно сообщит ему случайный «толчок» такой интенсивности, что электрон, весьма возможно, улетит прочь с огромной скоростью, величина которой оговорена принципом неопределенности Гейзенберга. Из других же описаний мы узнаем, что неопределенность — свойство самой частицы, а ее движению присуща неизбежная случайность, которая означает, что поведение частицы непредсказуемо непосредственно на квантовом уровне. Есть и такие точки зрения, согласно которым квантовая частица есть нечто непостижимое, к чему неприменимы сами понятия классического положения и классического импульса. Ни один из этих подходов мне не нравится. Первый может ввести в заблуждение, второй заведомо неправилен, а третий излишне пессимистичен.

О чем в действительности говорит нам описание в терминах волновых функций? Прежде всего напомним наше определение импульсного состояния. Это тот случай, когда импульс известен точно. Кривая ψ  имеет вид винтовой линии, всюду остающейся на одном и том же расстоянии от своей оси. И поэтому в любой точке амплитуды различных положений имеют равные квадраты модулей. Таким образом, если производится измерение положения, то вероятность найти частицу в какой-нибудь одной точке такая же, как вероятность найти ее в любой другой точке. Действительно, положение частицы оказывается полностью неопределенным! А как обстоит дело с конфигурационным состоянием? В этом случае ψ -кривая представляет собой дельта-функцию Дирака. Частица точно локализована в том месте, где находится пик дельта-функции, во всех остальных точках амплитуды равны нулю. Импульсные амплитуды лучше всего определять, перейдя в импульсное пространство. В этом случае их ψ′ -кривые имеют вид винтовых линий, так что амплитуды различных импульсов все имеют равные квадраты модулей. Результат измерения импульса частицы становится теперь совершенно неопределенным!

Интересно рассмотреть промежуточный случай, когда координаты и импульсы отчасти ограничены, но только лишь в той степени, которая разрешена соотношением неопределенности Гейзенберга. Кривая ψ  и соответствующая ей кривая ψ′  (являющиеся Фурье-преобразованиями друг друга) для такого случая изображены на рис. 6.14.

 

Рис. 6.14. Волновые пакеты, локализованные как в конфигурационном пространстве, так и в импульсном пространстве

 

Обратите внимание на то, что расстояние от каждой из кривых до оси существенно отлично от нуля лишь в весьма малой области. Вдали от этой области кривые очень плотно прижимаются к оси. Это означает, что квадраты модуля заметно отличны от нуля только в очень ограниченной области как в конфигурационном пространстве, так и в импульсном пространстве. В этом случае частица может быть локализована в пространстве, хотя соответствующий пик имеет некоторую ширину; аналогичным образом, импульс также достаточно хорошо определен, поэтому частица движется с достаточно хорошо определенной скоростью, а расплывание пика, характеризующего ее положение в пространстве, происходит не слишком быстро. Такое квантовое состояние принято называть волновым пакетом ; обычно волновой пакет считается лучшим квантовотеоретическим приближением к классической частице. Однако из-за «размазанности» в значении импульса (т. е. скорости) следует, что волновой пакет со временем расплывается. И чем более он локализован в начальный момент времени в пространстве, тем быстрее он расплывается.

 

Эволюционные процедуры U и R

 

В приведенном выше описании временно́й эволюции волнового пакета неявно содержится уравнение Шредингера , которое говорит нам о том, как именно эволюционирует во времени волновой пакет. Действительно, уравнение Шредингера гласит, что каждая компонента разложения ψ  по импульсным состояниям («чистым тонам») двигается со скоростью, равной величине с 2 , деленной на скорость классической частицы, имеющей импульс данной компоненты. На самом деле, уравнение Шредингера математически сформулировано гораздо более лаконично. Мы обратимся к его точной записи несколько позднее. Оно по форме несколько напоминает уравнения Гамильтона или Максвелла (будучи тесно связано с обоими) и так же, как и эти уравнения, дает полностью детерминистскую эволюцию волновой функции, если волновая функция задана в какой-либо один момент времени (см. гл.6 «Уравнение Шредингера; уравнение Дирака»)!

Полагая, что ψ  описывает мир в его «реальности», мы не обнаружим никакого индетерминизма, который, как предполагают некоторые, внутренне присущ квантовой теории, — не обнаружим, пока волновая функция ψ  удовлетворяет детерминистской эволюции Шредингера. Будем называть это эволюционной U -процедурой. Однако всякий раз, когда мы «производим измерения», увеличивая квантовые эффекты до классического уровня, мы изменяем правила. Теперь вместо U мы используем совершенно другую процедуру, которую я обозначу R . Она состоит в образовании квадратов модулей квантовых амплитуд для получения классических вероятностей![144] Именно эта и только  эта R -процедура привносит неопределенности и вероятности в квантовую теорию.

Детерминистская U -процедура, по-видимому, является неотъемлемой частью той квантовой теории, на которой в основном сосредоточены помыслы активно работающих физиков; что же касается философов, то их больше интересует недетерминистская редукция R вектора состояния (или, как ее иногда называют более выразительно, коллапс волновой функции ). Рассматриваем ли мы R просто как изменение «знания», которым мы располагаем о системе, или (как это делаю я) воспринимаем R как нечто «реальное», у нас имеется два совершенно различных математических подхода к описанию изменения во времени вектора состояния физической системы. В то время как U -процесс вполне детерминистский, R имеет вероятностный характер. U удовлетворяет комплексной квантовой суперпозиции состояний, a R грубо нарушает ее; U действует непрерывным образом, a R вопиющим образом разрывен. Исходя из стандартных процедур квантовой механики невозможно сделать заключение, что R -npoцесс может быть «выведен», как сложный случай U -процесса. R — это просто другая , отличная от U процедура, дающая вторую «половину» интерпретации квантового формализма. Весь индетерминизм квантовой теории происходит из R , а не из U . Но для изумительного согласия квантовой теории с наблюдательными фактами необходимы оба  процесса: и U , и R .

Обратимся снова к волновой функции ψ . Предположим, что ψ  описывает импульсное состояние. До тех пор, пока частица не взаимодействует с чем-нибудь, ψ  благополучно остается импульсным состоянием до скончания времен. (Именно это говорит нам уравнение Шредингера.) В любой момент времени, который мы выберем для «измерения импульса», мы получим один и тот же определенный ответ. Вероятностям здесь просто нет места. Предсказуемость остается здесь такой же четкой, как и в классической теории. Предположим, однако, что на некоторой стадии мы возьмемся измерить (т. е. увеличить до классического уровня) положение частицы. В этом случае мы получим целый массив амплитуд вероятности, модули которых нам предстоит возводить в квадрат. Имея такое изобилие вероятностей, мы столкнемся с полной неопределенностью в отношении того, каким будет результат измерения. Эта неопределенность согласуется с принципом неопределенности Гейзенберга.

С другой стороны, предположим, что мы начинаем с ψ , описывающей некоторое состояние частицы в конфигурационное пространстве. В этом случае согласно уравнению Шредингера ψ  не останется в том же состоянии, а будет быстро расплываться. Тем не менее уравнение Шредингера полностью определяет, как происходит такое расплывание функции ψ . В ее поведении нет ничего недетерминистского или вероятностного. В принципе можно было бы предложить эксперименты, которые мы могли бы выполнить, чтобы проверить этот факт. (Подробнее об этом см. ниже.) Но если мы вдруг захотим измерить импульс, то получим амплитуды для всех различных возможных значений импульса, имеющие равные квадраты модулей, а результат эксперимента будет полностью неопределен — опять в полном соответствии с принципом неопределенности Гейзенберга.

Аналогичным образом, если исходить из ψ  как волнового пакета, то его будущая эволюция полностью определяется уравнением Шредингера, и в принципе можно было бы предложить эксперименты, позволяющие проверить этот факт. Но как только мы вознамеримся произвести измерение над частицей каким-либо другим способом, например, измерить положение или импульс частицы, то мы сразу обнаружим, что неопределенности появляются снова (в соответствии с принципом неопределенности Гейзенберга) с вероятностями, задаваемыми квадратами модулей амплитуд.

Все это, несомненно, очень странно и таинственно. Но не означает, что мир непознаваем. В нарисованной мной картине мира многое подчиняется очень ясным и точным законам. Однако пока не существует ясного указания относительно того, когда следует прибегать к вероятностному правилу R вместо детерминистского правила U . Какой смысл следует вкладывать в выражение «выполнить измерение»? Почему (и когда) квадраты модулей амплитуд «становятся вероятностями»? Можно ли квантово-механически понять «классический уровень»? Это — глубокие и трудные вопросы, рассмотрением которых мы и займемся в следующей главе.

 


Дата добавления: 2018-08-06; просмотров: 264; Мы поможем в написании вашей работы!

Поделиться с друзьями:






Мы поможем в написании ваших работ!