Биосинтез жирных кислот



Биосинтез жирных кислот катализируется синтазой жирных кислот. Эта ферментная система локализована в цитоплазме и нуждается в качестве затравки в ацетил-КоА. В циклической реакции одна молекула удлиняется семикратно на С2-звена. В качестве конечного продукта реакции образуется анион С16-кислоты, пальмитат. Фактический субстрат реакции удлинения цепи малонил-КоА на каждой стадии конденсации отщепляет карбоксильную группу в вида СО2. Восстановителем в синтезе жирных кислот является НАДФН + Н+. В результате на синтез одной молекулы пальмитата расходуется одна молекула ацетил-КоА, 7 молекул малонил-КоА и 14 молекул НАДФН + Н+; при этом образуются 7 молекул СО2, 6 молекул H2O, 8 молекул КоА и 14 молекул НАДФ+.

А. Синтаза жирных кислот

 

Синтаза жирных кислот позвоночных состоит из двух идентичных пептидных цепей, т. е представляет собой гомодимер. Каждая из двух пептидных цепей, представленных на рисунке в виде половинок шара, может катализировать семь различных реакций ([1]-[7]), из которых складывается синтез пальмитата. Пространственное объединение нескольких последовательных реакций в таком мультиферментном комплексе имеет ряд принципиальных преимуществ по сравнению с отдельными ферментами; предотвращаются конкурентные реакции, последовательные реакции согласованы как на конвейере, реакции протекают особенно эффективно благодаря высокой концентрации субстрата из-за незначительных потерь за счет диффузии.

 

Каждая половинка синтазы жирных кислот может связывать субстрат тиолсложноэфирной связью (ацильный или ацетильный остаток) по двум SH-группам: цистеинового остатка (Cys-SH) и 4'-фосфопантетеиновой группы (Pan-SH). Pan-SH, очень похожий на кофермент А (см. рис. 111), связан с доменом синтазы, который называют ацилпереносящим белком [АПБ (ACP). Эта часть фермента функционирует как "длинная рука", которая фиксирует субстрат и передает его от одного реакционного центра к другому. Интересно отметить, что реакция при этом зависит от согласованности действия обеих половинок синтазы. Поэтому фермент функционально активен только в виде димера.

 

Активность мультиферментного комплекса пространственно распределена по трем различным доменам. Домен 1 катализирует перенос субстратов ацетил-КоА и малонил-КоА [АПБ]-S-ацетилтрансферазой [1] и [АПБ]-S-малонилтрансферазой [2] и последующую конденсацию обоих партнеров 3-оксоацил-[АПБ]-синтазой [3], домен 2 восстанавливает растущую цепь жирной кислоты с помощью 3-оксоацил-[АПБ]-редуктазы [4], 3-гидроксиацил-[АПБ]-дегидратазы [5] и еноил-[АПБ]-редуктазы [6]. Наконец, домен 3 после семи циклов удлинения цепи катализирует высвобождение готового продукта с помощью ацил-[АПБ]-гидролазы [7].

 

Б. Реакции синтазы жирных кислот

 

Биосинтез пальмитата (на схеме внизу) начинается с переноса ацетильной группы на уже упомянутый остаток цистеина (Cys-SH) [1] и малонильной группы на 4-фосфопантетеин (Pan-SH) в АПБ [2]. Удлинение цепи происходит вследствие переноса ацетильной группы на углеродный атом С-2 малонильного остатка (голубая стрелка), причем свободная карбоксильная группа отщепляется в виде СО2 [3]. Следующие три стадии реакции, а именно восстановление 3-оксогруппы [4], отщепление воды [5] и вновь восстановление [6], приводят к жирной кислоте с четырьмя углеродными атомами. Ацилтрансфераза [1] переносит этот промежуточный продукт на цистеиновый остаток, освобождая Pan-SH для присоединения следующего малонильного остатка. После семи циклов ацил-[АПБ]-гидролаза [7] «опознает» и освобождает конечный продукт — молекулу пальмитиновой кислоты.

Холестерин

Холестери́н (др.-греч. χολή — желчь и στερεός — твёрдый; синоним: холестерол) — органическое соединение, природный жирный (липофильный) спирт, содержащийся в клеточных мембранах всех живых организмов за исключением безъядерных (прокариоты). Нерастворим в воде, растворим в жирах и органических растворителях. Около 80 % холестерина вырабатывается самим организмом (печенью, кишечником, почками, надпочечниками, половыми железами), остальные 20 % поступают с пищей[1]. В организме находится 80 % свободного и 20 % связанного холестерина. Холестерин обеспечивает стабильность клеточных мембран в широком интервале температур. Он необходим для выработки витамина D, выработки надпочечниками различных стероидных гормонов, включая кортизол, альдостерон, женских половых гормонов эстрогенов и прогестерона, мужского полового гормона тестостерона, а по последним данным — играет важную роль в деятельности синапсов головного мозга и иммунной системы, включая защиту от рака[2][нет в источнике]

Биосинтез холестерина

Основная статья: Биосинтез холестерина

 

Холестерин может образовываться в животном организме и поступать в него с пищей.

 

В настоящее время установлена следующая цепь биосинтеза холестерина (основа биосинтеза и других стероидов), включающая в себя несколько ступеней.

Превращение трёх молекул активного ацетата в пятиуглеродный мевалонат. Происходит в ГЭПР.

Превращение мевалоната в активный изопреноид — изопентенилпирофосфат.

Образование тридцатиуглеродного изопреноида сквалена из шести молекул изопентенилдифосфата.

Циклизация сквалена в ланостерин.

Последующее превращение ланостерина в холестерин.

 

У некоторых организмов при синтезе стероидов могут встречаться другие варианты реакций (например, немевалонатный путь образования пятиуглеродных молекул).

[править]

Биологическая роль

 

Холестерин в составе клеточной плазматической мембраны играет роль модификатора бислоя, придавая ему определённую жёсткость за счёт увеличения плотности «упаковки» молекул фосфолипидов. Таким образом, холестерин — стабилизатор текучести плазматической мембраны[5].

 

Холестерин открывает цепь биосинтеза стероидных половых гормонов и кортикостероидов[6], служит основой для образования жёлчных кислот и витаминов группы D[7][8], участвует в регулировании проницаемости клеток и предохраняет эритроциты крови от действия гемолитических ядов[7][8].

 

Холестерин нерастворим в воде и в чистом виде не может доставляться к тканям организма при помощи основанной на воде крови. Вместо этого холестерин в крови находится в виде хорошо растворимых комплексных соединений с особыми белками-транспортерами, так называемыми аполипопротеинами. Такие комплексные соединения называются липопротеинами.

 

Существует несколько видов аполипопротеинов, различающихся молекулярной массой, степенью сродства к холестерину и степенью растворимости комплексного соединения с холестерином (склонностью к выпадению кристаллов холестерина в осадок и к формированию атеросклеротических бляшек). Различают следующие группы: высокомолекулярные (HDL, ЛПВП, липопротеины высокой плотности) и низкомолекулярные (LDL, ЛПНП, липопротеины низкой плотности), а также очень низкомолекулярные (VLDL, ЛПОНП, липопротеины очень низкой плотности) и хиломикрон.

 

К периферийным тканям холестерин транспортируется хиломикроном, ЛПОНП и ЛПНП. К печени, откуда затем холестерин удаляется из организма, его транспортируют аполипротеины группы ЛПВП.

[править]

Уровень холестерина

 

Исследования установили зависимость между содержанием различных групп липопротеинов и здоровьем человека. Большое количество ЛПНП сильно коррелирует с атеросклеротическими нарушениями в организме. По этой причине такие липопротеины часто называют «плохими». Низкомолекулярные липопротеиды малорастворимы и склонны к выделению в осадок кристаллов холестерина и к формированию атеросклеротических бляшек в сосудах, тем самым повышая риск инфаркта или ишемического инсульта, а также других сердечно-сосудистых осложнений.

 

С другой стороны, большое содержание ЛПВП в крови характерно для здорового организма, поэтому часто эти липопротеины называют «хорошими». Высокомолекулярные липопротеины хорошо растворимы и не склонны к выделению холестерина в осадок, и тем самым защищают сосуды от атеросклеротических изменений (то есть не являются атерогенными).

 

Уровень холестерина в крови измеряется либо в ммоль/л (миллимоль на литр, стандарт действующий в РФ) либо в мг/дл (миллиграмм на децилитр, 1 ммоль/л равен 38.665 мг/дл). Идеально, когда уровень «плохих» низкомолекулярных липопротеинов ниже 100 мг/дл (для лиц с высоким риском сердечно-сосудистых заболеваний — ниже 70 мг/дл). Такой уровень, однако, у взрослых достигается редко. Если уровень низкомолекулярных липопротеинов выше 160 мг/дл, рекомендуется использовать диету для снижения его ниже 130 мг/дл. Если этот уровень выше 190 мг/дл или упорно держится выше 160 мг/дл, рекомендуется взвесить возможность лекарственной терапии. Для лиц с высоким риском сердечно-сосудистых заболеваний эти цифры могут снижаться. Процент «хороших» высокомолекулярных липопротеинов в общем уровне холестерин-связывающих липопротеинов чем выше, тем лучше. Хорошим показателем считается, если он гораздо выше 1/5 от общего уровня холестерин-связывающих липопротеинов.

 

К факторам, повышающим уровень «плохого» холестерина, относятся:

курение;

избыточный вес или ожирение, переедание;

гиподинамия или недостаточная физическая активность;

неправильное питание с высоким содержанием холестерина, транс-жиров (содержащихся в частично гидрогенизированных жирах), насыщенных животных жиров в пище (в частности, жирное мясо, сало), высоким содержанием в пище углеводов (особенно легкоусваиваемых, типа сладостей и кондитерских изделий), недостаточным содержанием клетчатки и пектинов, липотропных факторов, полиненасыщенных жирных кислот, микроэлементов и витаминов;

застой желчи в печени при различных нарушениях работы этого органа[источник не указан 296 дней] (также ведёт к желчнокаменному холециститу). Возникает при злоупотреблении алкоголем, некоторых вирусных заболеваниях, приёме некоторых лекарств;

также некоторые эндокринные нарушения — сахарный диабет, гиперсекреция инсулина, гиперсекреция гормонов коры надпочечников, недостаточность гормонов щитовидной железы, половых гормонов.

 

Повышенный уровень «плохого» холестерина также может наблюдаться при некоторых заболеваниях печени и почек, сопровождающихся нарушением биосинтеза «правильных» липопротеидов в этих органах. Он может также быть наследственным, генетически обусловленным при некоторых формах так называемых «семейных дислипопротеинемий». В этих случаях больным, как правило, нужна специальная лекарственная терапия.

 

К факторам, снижающим уровень «плохого» холестерина, относятся физкультура, спорт и вообще регулярная физическая активность, отказ от курения и употребления алкоголя, еда, содержащая мало насыщенных животных жиров и легкоусваиваемых углеводов и богатая клетчаткой, полиненасыщенными жирными кислотами, липотропными факторами (метионином, холином, лецитином), витаминами и микроэлементами.

 

Холестерин также является основным компонентом большинства камней в желчном пузыре (см. историю открытия).


Дата добавления: 2016-01-05; просмотров: 97; Мы поможем в написании вашей работы!

Поделиться с друзьями:






Мы поможем в написании ваших работ!