Критерии адекватности математической модели и объекта



 

АДЕКВАТНОСТЬ МОДЕЛИ — соответствие модели моделируемому объекту или процессу. Адекватность — в какой-то мере условное понятие, так как полного соответствия модели реальному объекту быть не может, иначе это была бы не модель, а сам объект. При моделировании имеется в виду адекватность не вообще, а по тем свойствам модели, которые для исследования считаются существенными.

Модель считается адекватной, если отражает заданные свойства с приемлемой точностью. Точность определяется как степень совпадения значений выходных параметров модели и объекта.

Точность модели различна в разных условиях функционирования объекта. Эти условия характеризуются внешними параметрами. В пространстве внешних параметров выделить область адекватности модели, где погрешность меньше заданной предельно допустимой погрешности. Определение области адекватности моделей - сложная процедура, требующая больших вычислительных затрат, которые быстро растут с увеличением размерности пространства внешних параметров. Эта задача по объему может значительно превосходить задачу параметрической оптимизации самой модели, поэтому для вновь проектируемых объектов может не решаться.

Точность математической модели оценивается степенью совпадения значений выходных параметров реального объекта и значений тех же параметров, рассчитанных с помощью модели.

Адекватность математической модели - это ее способность отражать заданные свойства объекта с погрешностью, не выше заданной.

Верификация — проверка, проверяемость, способ подтверждения каких-либо теоретических положений, алгоритмов, программ и процедур путем их сопоставления с опытными (эталонными или эмпирическими) данными, алгоритмами и программами.

Верификация — это подтверждение соответствия конечного продукта Проверка истинности теоретических положений, установление их достоверности предопределённым эталонным требованиям логико-методологическая процедура установления истинности научной на основе их соответствия эмпирическим данным или теоретическим положениям, соответствующим эмпирическим данным. В рамках логического позитивизма принцип верифицируемости мыслится критериально исчерпывающим способом апробации научных утверждений, понятых в качестве "протокольных предположений" как фиксаций данных непосредственного опыта: утверждения, выходящие за рамки "протокольных предложений" трактуются как неверифицируемые, в случае чего в действие вступает принцип фальсифицируемости.

 

Модель и понятие моделирования.

 

Модель (лат. modulus — мера) — это объект-заместитель объекта-оригинала, обеспечивающий изучение некоторых свойств оригинала.

Модель - создаваемый с целью получения и (или) хранения информации специфический объект (в форме мысленного образа, описания знаковыми средствами либо материальной системы), отражающий свойства, характеристики и связи объекта – оригинала произвольной природы, существенные для задачи, решаемой субъектом.

Моделирование – процесс создания и использования модели.

Цели моделирования

Познание действительности

Проведение экспериментов

Проектирование и управление

Прогнозирование поведения объектов

Тренировка и обучения специалистов

Обработка информации

Классификация по форме представления

Материальные - воспроизводят геометрические и физические свойства оригинала и всегда имеют реальное воплощение (детские игрушки, наглядные учебные пособия, макеты, модели автомобилей и самолетов и прочее).

a) геометрически подобные масштабные, воспроизводящие пространственно- геометрические характеристики оригинала безотносительно его субстрату (макеты зданий и сооружений, учебные муляжи и др.);

b) основанные на теории подобия субстратно подобные, воспроизводящие с масштабированием в пространстве и времени свойства и характеристики оригинала той же природы, что и модель, (гидродинамические модели судов, продувочные модели летательных аппаратов);

c) аналоговые приборные, воспроизводящие исследуемые свойства и характеристики объекта оригинала в моделирующем объекте другой природы на основе некоторой системы прямых аналогий (разновидности электронного аналогового моделирования).

Информационные - совокупность информации, характеризующая свойства и состояния объекта, процесса, явления, а также их взаимосвязь с внешним миром).

2.1. Вербальные - словесное описание на естественном языке).

2.2. Знаковые - информационная модель, выраженная специальными знаками (средствами любого формального языка).

2.2.1. Математические - математическое описание соотношений между количественными характеристиками объекта моделирования.

2.2.2. Графические - карты, чертежи, схемы, графики, диаграммы, графы систем.

2.2.3. Табличные - таблицы: объект-свойство, объект-объект, двоичные матрицы и так далее.

Идеальные – материальная точка, абсолютно твердое тело, математический маятник, идеальный газ, бесконечность, геометрическая точка и прочее...

3.1. Неформализованные модели - системы представлений об объекте оригинале, сложившиеся в человеческом мозгу.

3.2. Частично формализованные.

3.2.1. Вербальные - описание свойств и характеристик оригинала на некотором естественном языке (текстовые материалы проектной документации, словесное описание результатов технического эксперимента).

3.2.2. Графические иконические - черты, свойства и характеристики оригинала, реально или хотя бы теоретически доступные непосредственно зрительному восприятию (художественная графика, технологические карты).

3.2.3. Графические условные - данные наблюдений и экспериментальных исследований в виде графиков, диаграмм, схем.

3.3. Вполне формализованные (математические) модели.

Свойства моделей

Конечность: модель отображает оригинал лишь в конечном числе его отношений и, кроме того, ресурсы моделирования конечны;

Упрощенность: модель отображает только существенные стороны объекта;

Приблизительность: действительность отображается моделью грубо или приблизительно;

Адекватность: насколько успешно модель описывает моделируемую систему;

Информативность: модель должна содержать достаточную информацию о системе - в рамках гипотез, принятых при построении модел;

Потенциальность: предсказуемость модели и её свойств;

Сложность: удобство её использования;

Полнота: учтены все необходимые свойства;

Адаптивность.

 

Цели и задачи моделирования.

 

Цели и задачи компьютерного моделирования.

 

Главной задачей компьютерного моделирования выступает построение информационной модели объекта, явления.

 

ЦЕЛИ МОДЕЛИРОВАНИЯ

 

1) Познание окружающего мира.

Зачем человек создает модели? Несколько миллионов лет назад первобытные люди изучали окружающую природу, чтобы научиться противостоять природным стихиям, пользоваться природными благами, просто выживать. Накопленные знания передавались из поколения в поколение устно, позже письменно, наконец, с помощью предметных моделей. Так родилась, к примеру, модель земного шара — глобус, — позволяющая получить наглядное представление о форме нашей планеты, ее вращении вокруг собственной оси и расположении материков. Такие модели позволяют понять, как устроен конкретный объект, узнать его основные свойства, установить законы его развития и взаимодействия с окружающим миром моделей.

2) Создание объектов с заданными свойствами (задача типа «Как сделать, чтобы...»).

Накопив достаточно знаний, человек задал себе вопрос: «Нельзя ли создать объект с заданными свойствами и возможностями, чтобы противодействовать стихиям или ставить себе на службу природные явления?» Человек стал строить модели еще не существующих объектов. Так родились идеи создания ветряных мельниц, различных механизмов, даже обыкновенного зонтика. Многие из этих моделей стали в настоящее время реальностью. Это объекты, созданные руками человека.

3) Определение последствий воздействия на объект и принятие правильного решения (задача типа «Что будет, если...»: что будет, если увеличить плату за проезд в транспорте, или что произойдет, если закопать ядерные отходы в такой-то местности?)

Например, для спасения Петербурга от постоянных наводнений, приносящих огромный ущерб, решено было возвести дамбу. При ее проектировании было построено множество моделей, в том числе и натурных, именно для того, чтобы предсказать последствия вмешательства в природу.

4) Эффективность управления объектом (или процессом).

Поскольку критерии управления бывают весьма противоречивыми, то эффективным оно окажется только при условии, если будут «и волки сыты, и овцы целы». Например, нужно наладить питание в школьной столовой. С одной стороны, оно должно отвечать возрастным требованиям (калорийное, содержащее витамины и минеральные соли), с другой — нравиться большинству ребят и к тому же быть «по карману» родителям, а с третьей — технология приготовления должна соответствовать возможностям школьных столовых. Как совместить несовместимое? Построение модели поможет найти приемлемое решение.

 

Классификация моделей.

 

1. Классификация по области использования

Учебные: наглядные пособия, различные тренажеры, обучающие программы.

Опытные: уменьшенные или увеличенные копии исследуемого объекта для дальнейшего его изучения (модели корабля, автомобиля, самолета, гидростанции).

Научно-технические модели создают для исследования процессов и явлений (стенд для проверки телевизоров; синхротрон - ускоритель электронов и др.).

Игровые: военные, экономические, спортивные, деловые игры.

Имитационные: отражают реальность с той или иной степенью точности (испытание нового лекарственного средства в ряде опытах на мышах; эксперименты по внедрению в производство новой технологии).

2. Классификация с учетом фактора времени

Статическая модель - модель объекта в данный момент времени.

Динамическая модель позволяет увидеть изменения объекта во времени

3. Классификация по способу представления

3.1. Материальная модель - это физическое подобие объекта. Они воспроизводят геометрические и физические свойства оригинала (чучела птиц, муляжи животных, внутренних органов человеческого организма, географические и исторические карты, схема солнечной системы).

Информационная модель - это совокупность информации, характеризующая свойства и состояния объекта, процесса, явления, а также взаимосвязь с внешним миром.

Любая информационная модель содержит лишь существенные сведения об объекте с учетом той цели, для которой она создается. Информационные модели одного и того же объекта, предназначенные для разных целей, могут быть совершенно разными.

3.2.Информационные модели

Вербальная модель - информационная модель в мысленной или разговорной форме.

Знаковая модель - информационная модель, выраженная специальными знаками, т.е. средствами любого формального языка. Знаковые модели - это рисунки, тексты, графики, схемы, таблицы и т.д. Они длятся на:

– компьютерная модель - модель, реализованная средствами программной среды.

– некомпьютерная модель

 


Дата добавления: 2018-02-18; просмотров: 6203; Мы поможем в написании вашей работы!

Поделиться с друзьями:






Мы поможем в написании ваших работ!