Основные требования к математическим моделям



Сформулируйте понятия и определения оригинала и модели.   Оригинал – исследуемый объект, модель – условный образ оригинала. Моделирование можно рассматривать как замещение исследуемого объекта (оригинала) его условным образом, описанием или другим объектом, именуемым моделью и обеспечивающим близкое к оригиналу поведение в рамках некоторых допущений и приемлемых погрешностей. Моделирование обычно выполняется с целью познания свойств оригинала путем исследования его модели, а не самого объекта.   2. Этапы моделирования Первый этап — постановка задачи включает в себя стадии: описание задачи, определение цели моделирования, анализ объекта. Описание задачи Задача формулируется на обычном языке. Определение цели моделирования. На этой стадии необходимо среди многих характеристик (параметров) объекта выделить существенные. Определение цели моделирования позволяет четко установить, какие данные являются исходными, что требуется получить на выходе и какими свойствами объекта можно пренебречь.Анализ объекта подразумевает четкое выделение моделируемого объекта и его основных свойств. Второй этап — формализация задачи связан с созданием формализованной модели, то есть модели, записанной на каком-либо формальном языке. Например, данные переписи населения, представленные в виде таблицы или диаграммы — это формализованная модель. В общем смысле формализация — это приведение существенных свойств и признаков объекта моделирования к выбранной форме. Формальная модель - это модель, полученная в результате формализации. Третий этап — разработка компьютерной модели начинается с выбора инструмента моделирования, другими словами, программной среды, в которой будет создаваться и исследоваться модель. Четвертый этап — компьютерный эксперимент включает две стадии: тестирование модели и проведение исследования.Тестирование модели — процесс проверки правильности построения модели.Исследование модели: к этой стадии компьютерного эксперимента можно переходить только после того, как тестирование модели прошло успешно, и вы уверены, что создана именно та модель, которую необходимо исследовать. Пятый этап — анализ результатов является ключевым для процесса моделирования. Именно по итогам этого этапа принимается решение: продолжать исследование или закончить. Если результаты не соответствуют целям поставленной задачи, значит, на предыдущих этапах были допущены ошибки. В этом случае необходимо корректировать модель, то есть возвращаться к одному из предыдущих этапов. Процесс повторяется до тех пор, пока результаты компьютерного эксперимента не будут отвечать целям моделирования.  

Принцип классификации моделей и процессов.

 

Наиболее актуальны следующие признаки классификации:

- характер моделируемой стороны объекта;

- характер процессов, протекающих в объекте;

- способ реализации модели.

Классификация моделей и моделирования по признаку "характер моделируемой стороны объекта". В соответствии с этим признаком модели могут быть:

- функциональными (кибернетическими);

- структурными;

- информационными.

Функциональные модели отображают только поведение, функцию моделируемого объекта. В этом случае моделируемый объект рассматривается как "черный ящик", имеющий входы и выходы. Физическая сущность объекта, природа протекающих в нем процессов, структура объекта остаются вне внимания исследователя, хотя бы потому, что неизвестны.

Структурное моделирование это создание и исследование модели, структура которой (элементы и связи) подобна структуре моделируемого объекта.

Информационная модель– модель объекта, представленная в виде информации, описывающей существенные для данного рассмотрения параметры и переменные величины объекта, связи между ними, входы и выходы объекта, и позволяющая путем подачи на модель информации об изменениях входных величин моделировать возможные состояния объекта.

Классификация моделей и моделирования по признаку "характер процессов, протекающих в объекте"

По этому признаку модели могут быть детерминированными или стохастическими, статическими или динамическими, дискретными или непрерывными или дискретно-непрерывными.

Детерминированные модели отображают процессы, в которых отсутствуют случайные воздействия.

Стохастические модели отображают вероятностные процессы и события.

Статические модели служат для описания состояния объекта в какой-либо момент времени.

Динамические модели отображают поведение объекта во времени.

Дискретные модели отображают поведение систем с дискретными состояниями.

Непрерывные модели представляют системы с непрерывными процессами.

Дискретно-непрерывные модели строятся тогда, когда исследователя интересуют оба эти типа процессов.

Классификация моделей и моделирования по признаку "способ реализации модели". Согласно этому признаку модели делятся на два обширных класса:

- абстрактные (мысленные) модели;

- материальные модели.

Абстрактные модели представляют собой определенные конструкции из общепринятых знаков на бумаге или другом материальном носителе или в виде компьютерной программы. Абстрактные модели, не вдаваясь в излишнюю детализацию, можно разделить на:

- символические;

- математические.

Символическая модель - это логический объект, замещающий реальный процесс и выражающий основные свойства его отношений с помощью определенной системы знаков или символов. Это либо слова естественного языка, либо слова соответствующего тезауруса, графики, диаграммы и т.п.

Математическое моделирование - это процесс установления соответствия моделируемому объекту некоторой математической конструкции, называемой математической моделью, и исследование этой модели, позволяющее получить характеристики моделируемого объекта.

Математические модели могут быть:

- аналитическими;

- имитационными;

- смешанными (аналитико-имитационными).

Аналитические модели - это функциональные соотношения: системы алгебраических, дифференциальных, интегро-дифференциальных уравнений, логических условий.

Имитационное моделирование предполагает представление модели в виде некоторого алгоритма - компьютерной программы, - выполнение которого имитирует последовательность смены состояний в системе и таким образом представляет собой поведение моделируемой системы.

Аналитико-имитационное моделирование. При построении таких моделей процессы функционирования объекта декомпозируются на составляющиеподпроцессы и для которых возможно используют аналитические модели, а для остальных подпроцессов строят имитационные модели.

 

Основные требования к математическим моделям

 

Основными требованиями, предъявляемыми к математическим моделям, являются требования адекватности, универсальности и экономичности.

Адекватность. Модель считается адекватной, если отражает заданные свойства объекта с приемлемой точностью. Точность определяется как степень совпадения значений выходных параметров модели и объекта.

Универсальность. При определении ОА необходимо выбрать совокупность внешних параметров и совокупность выходных параметров, отражающих учитываемые в модели свойства. Типичными внешними параметрами при этом являются параметры нагрузки и внешних воздействий (электрических, механических, тепловых, радиационных и т. п.). Выбор совокупности выходных параметров также неоднозначен, однако для большинства объектов число и перечень учитываемых свойств и соответствующих им выходных параметров сравнительно невелики, достаточно стабильны и составляют типовой набор выходных параметров. Например, для макромоделей логических элементов БИС такими выходными параметрами являются уровни выходного напряжения в состояниях логических "О" и "1", запасы помехоустойчивости, задержка распространения сигнала, рассеиваемая мощность. Если адекватность характеризуется положением и размерами ОА, то универсальность модели определяется числом и составом учитываемых в модели внешних и выходных параметров.

Экономичность модели характеризуется затратами вычислительных ресурсов для ее реализации, а именно затратами машинного времени Тм и памяти Пм. Общие затраты Тм и Пм на выполнение в САПР какой-либо проектной процедуры зависят как от особенностей выбранных моделей, так и от методов решения. В большинстве случаев при реализации численного метода происходят многократные обращения к модели элемента, входящего в состав моделируемого объекта. Тогда удобно экономичность модели элемента характеризовать затратами машинного времени при обращении к модели, а число обращений к модели должно учитываться при оценке экономичности метода решения. Экономичность модели по затратам памяти оценивается объемом оперативной памяти, необходимой для реализации модели. Требования широких областей адекватности, высокой степени универсальности, с одной стороны, и высокой экономичности — с другой, являются противоречивыми. Наилучшее компромиссное удовлетворение этих требований оказывается неодинаковым в различных применениях. Это обстоятельство обусловливает использование в САПР многих моделей для объектов одного и того же типа — различного рода макромоделей, многоуровневых, смешанных моделей и т. п.

 


Дата добавления: 2018-02-18; просмотров: 1442; Мы поможем в написании вашей работы!

Поделиться с друзьями:






Мы поможем в написании ваших работ!