Некоторые свойства сжиженных газов



Сжиженные газы, о которых шла речь выше , - азот, кислород, водород и гелий, - позволяют получить низкие температуры в интервалах температур, простирающихся от температур их кипения под атмосферным давлением до температур их отвердения, до которого их можно довести, откачивая пары над ними (исключение составляет гелий, не твердеющий ни при каком охлаждении). В твердом состоянии эти газы могут служить хладоагентами, так как трудно создать надежный тепловой контакт между ними и охлажденными телами.

 

  N2   O2 H2  He4
Температура кипения под давлением 1атм, К 77,32 90,12 20,39 4,21
Температура отвердения, К 63,14 54,36 14,04 Не твердеет  
Упругость пара при температуре отвердения, мбар 129 1,50 75,8 -
Плотность при температуре кипения при 1 атм, кг/м3 800 1150 71 125
Теплота испарения при температуре кипения при 1 атм, кДж/кг 200 212,8 456,2 23
Плотность в твердом состоянии, кг/м3 1026 1425 80 -

 

    В таблице приведены данные, показывающие, какие именно интервалы температур перекрываются этими сжиженными газами. Там же приведены и некоторые другие сведения о них.

 Из таблицы видно, что сжиженные газы позволяют непосредственно получать низкие температуры в следующих интервалах:

63,14 – 77,32 К – жидкий азот,

    54,36 – 90,12 К – жидкий водород,

    14,04 – 20,39 К – жидкий водород,

    0,7 – 4,21 К – жидкий гелий (0,7 К – наинизшая температура, достигаемая откачкой паров жидкого гелия Не4.)

    С помощью этих сжиженных газов могут быть получены и любые промежуточные температуры, хотя это требует применения особых, иногда весьма сложных устройств.

    Устройства эти, служащие для проведения исследований как внутри, так и вне приведенных выше температурных интервалов, называются криостатами. Они позволяют получить не только нужную температуру, но и поддерживать ее во время исследования постоянной. Они снабжаются даже тем или иным термометром для измерения температуры.

    На рис. 7 показан простейший криостат для исследований в области гелиевых температур.

    Он состоит из двух, помещенных один на другой сосудов Дьюара – внутреннего А и внешнего В. первый из них                          рис.7

наполняется жидким гелием, второй – жидким азотом. Такое азотное  «окружение» необходимо для уменьшения подвода тепла извне, что позволяет замедлить испарение и продлить тем самым «срок службы» налитого жидкого гелия. Внутренний сосуд вакуумно плотно закрывается крышкой (уплотнение обеспечивается резиновой манжетой m, охватывающей крышку и сосуд). Трубка N в крышке служит для откачки паров гелия, что позволяет изменять его температуру. Поддерживая упругость паров постоянной (с помощью особого устройства вне криостата, не показанного на рисунке), можно поддерживать и температуру жидкости постоянной. Манометр (также не показанный на рисунке), присоединенный к криостату через трубку М, служит для измерения упругости паров, а по ней судят о температуре жидкости. Исследуемое тело, помещаемое в жидкий гелий, крепится к крышке тонкостенными трубками из материала ,плохо проводящего тепло.

 

 

Сверхнизкие температуры

Данные, приведенные в таблице ,показывают, что сжиженные газы позволяют получить температуры вплоть до 4,21 К (жидкий гелий).

    Если заставить жидкий гелий кипеть под пониженным давлением (для этого нужно откачивать пары над ним), то его температуру можно понизить примерно до 1К. Рекордно низкая температура, полученная таким образом, равна 0,69 К. дальнейшее понижение температуры жидкого гелия откачкой его паров оказывается практически невозможным, так как упругость паров гелия в этой области температур становится очень малой. Если при 0,7 К упругость паров гелия равна 2,2*10-3 мм рт. ст., то при 0,5 К она становится равной 1,6*10-5, а при 0,3 К – 3,2 *10-10 мм рт. ст. Имея в виду легкость, с какой испаряется жидкий гелий (теплота испарения 23 кДж/кг), ясно ,что насосы не могут «успеть» откачивать пары до столь малых давлений.

    Поэтому для получения еще более низких температур (их называют сверхнизкими) используется другой способ – так называемый магнитный метод охлаждения. Сущность его легко понять из второго начала термодинамики.

    В качестве хладоагента в этом методе используется особый вид веществ – так называемые парамагнитные соли. Это сложные химические соединения, примером которых может служить соль Fe2 (SO4)3 (NH4)2 SO4 · 24H2O (железоаммониевые квасцы). Вещества эти заманчивы тем, что каждая их молекула обладает магнитным моментом, т.е. ведет себя как постоянный маленький магнит. В обычных условиях, т.е. в отсутствие магнитного поля, эти макроскопические магнитики ориентированы совершенно беспорядочно из-за тепловых движений, в которых участвуют молекулы соли (рис. 8, а) с этим магнитным беспорядком, так же как с беспорядком тепловым, связана определенная энтропия.

 

 

                                   Рис. 8

Если поместить парамагнитное вещество в магнитное поле, то магнитные моменты частично повернуться в направлении поля, так что в их расположении появится некоторый порядок (рис8, б). Этом процесс называется намагничиванием. Значит, магнитное поле приводит к тому, что степень беспорядка (магнитного) уменьшается. Уменьшается поэтому и связанная с ним энтропия.

    Представим себе теперь, что парамагнитное вещество намагничивается в адиабатных условиях (обратимым образом). Энтропия в этом случае остается, как мы знаем, постоянной. Но так как магнитная часть энтропии при намагничивании уменьшается, то тепловая часть должна соответственно увеличиваться, т.е. должна повыситься температура. Наоборот, если предварительно намагниченный образец адиабатно размагнитить, то он должен охладиться: вызванное размагничиванием увеличение магнитного беспорядка, а значит, и связанной с ним энтропии должно скомпенсироваться уменьшением тепловой части энтропии, что и происходит при охлаждении. Размагничивание играет в магнитном методе такую же роль, какую при охлаждении газа играет его расширение.

    Опыт с магнитным охлаждением ставится так: сначала парамагнитную соль охлаждают с помощью жидкого гелия до возможно низкой температуры. Затем, не прерывая контакта соли с жидким гелием, ее намагничивают в возможно более сильном магнитном поле. Выделяющееся при этом тепло поглощается жидким гелием, так что намагничивание производится в изотермических условиях. После этого соль изолируют от жидкого гелия и размагничивают ее (адиабатно), удаляя из магнитного поля. В результате соль оказывается охлажденной. Этим способом удается получить рекордно низкие температуры – порядка ста тысячных долей градуса.

    Полученная таким образом охлажденная соль используется для охлаждения других исследуемых тел. Существуют различные способы создания теплового контакта между солью и исследуемыми образцами.

 


Дата добавления: 2021-04-24; просмотров: 88; Мы поможем в написании вашей работы!

Поделиться с друзьями:






Мы поможем в написании ваших работ!