Значение и роль химического и электрохимического потенциалов в процессе жизнедеятельности организма.



Электрохимические методы широко используются в различных отраслях промышленности. В химической промышленности это электролиз — важнейший метод производства хлора и щелочей, многочисленных окислителей, получение фтора и фторорганических соединений. Возрастающее значение приобретает электросинтез самых различных химических соединений. На электрохимических методах основано получение алюминия, магния, натрия, лития, бериллия, тантала, титана, цинка,). Водород получают электролизом воды В технике всё шире применяются электрохимические преобразователи информации.

Понимание важнейших биологических процессов, например усвоения и использования энергии пищи, распространения нервного импульса, восприятия зрительного образа, невозможно без учёта электрохимических звеньев.

Определите изменение энтропии для живого организма (с учётом всех параметров внутренней и внешней среды, примеры). Уравнение Пригожина (запись, формулировка, анализ).

Энтропия является понятием, которое было введено в термодинамике. С помощью данной величины определяется мера рассеивания энергии. Любая система испытывает противоборство, которое возникает между теплом и силовым полем. Увеличение температуры приводит к снижению степени упорядоченности. Для определения меры беспорядка и введена величина, называемая энтропией. Она характеризует степень обмена потоками энергии как в замкнутых, так и в открытых системах. Изменение энтропии при изолированных схемах происходит в сторону увеличения вместе с ростом тепла. Максимального своего значения эта мера беспорядка достигает в состоянии, характеризующемся термодинамическим равновесием, которое является наиболее хаотичным .

Если система является открытой и при этом неравновесной, то изменение энтропии происходит в сторону снижения. Величина данной меры в этом варианте характеризуется формулой. Для ее получения производится суммирование двух величин: - потока энтропии, происходящего за счет обмена тепла и веществ с внешней средой; - величины изменения показателя хаотичного движения внутри системы. Изменение энтропии происходит в любой среде, где протекают биологические, химические и физические процессы. Это явление реализуется с определенной скоростью. Изменение энтропии может быть величиной положительной - в таком случае происходит приток данного показателя в систему из внешней среды. Возможны случаи, когда величина, указывающая на изменение энтропии, определена со знаком "минус". Такое числовое значение указывает на отток энтропии. Система может находиться в стационарном состоянии. В таком случае количество произведенной энтропии компенсируется оттоком данного показателя. Примером такой ситуации может служить состояние живого организма. Оно неравновесно, но в то же время стационарно. Любой организм качает энтропию, обладающую отрицательным значением, из окружающей его среды. Выделение меры беспорядка из него может даже превышать величину поступлении.

Самоорганизация неравновесных систем.

В XIX веке было установлено, что в тех открытых системах, что находятся в сильно неравновесных условиях, могут спонтанно возникать такие типы структур, которые способны к самоорганизации, т.е. к переходу от беспорядка, "теплового хаоса", к упорядоченным состояниям. Создатель новой, неравновесной термодинамики Пригожин назвал эти структуры диссипативными - стремясь подчеркнуть парадокс. Особое значение в этих процессах имеют флуктуации - случайные отклонения некой величины, характеризующей систему из большого числа единиц, от ее среднего значения (одна из книг Пригожина так и называется - "Самоорганизация в неравновесных системах. От диссипативных структур к упорядочению через флуктуации").

Одним из простейших случаев такой спонтанной самоорганизации является так называемая неустойчивость Бенара. Если мы будем постепенно нагревать снизу не слишком толстый слой вязкой жидкости, то до определенного момента отвод тепла от нижнего слоя жидкости к верхнему обеспечивается одной лишь теплопроводностью, без конвекции. Однако когда разница температур нижнего и верхнего слоев достигает некоторого порогового значения, система выходит из равновесия и происходит поразительная вещь. В нашей жидкости возникает конвекция, при которой ансамбли из миллионов молекул внезапно, как по команде, приходят в согласованное движение, образуя конвективные ячейки в форме правильных шестиугольников. Это означает, что большинство молекул начинают двигаться с почти одинаковыми скоростями, что противоречит и положениям молекулярно-кинетической теории, и принципу порядка Больцмана из классической термодинамики.

 

16.  Организм как открытая термодинамическая система (определение, примеры, доказательства).


Дата добавления: 2021-07-19; просмотров: 104; Мы поможем в написании вашей работы!

Поделиться с друзьями:






Мы поможем в написании ваших работ!