Скорость упругих волн в твердой среде



Пусть в направлении оси х распространяется продольная плос­кая волна. Выделим в среде цилиндрический объем с площадью основания  S и высотой Δx (рис. 5.1). Смещения ξ частиц с разными х в каждый момент времени оказываются различными (см. рис. 1.3, на котором изображено ξ в функции от x). Если основание цилиндра с координатой х имеет в некоторый момент времени смещение ξ, то смещение основания с координатой x+Δx будет ξ+Δξ. Поэтому рассматриваемый объем деформируется – он получает удлинение (алгебраическая величина, соответствует сжатию цилиндра) или относительное удлинение. Величина дает среднюю деформацию цилинд­ра. Вследствие того, что ξ меняется с изменением х не по линейному зако­ну, истинная деформация в разных сечениях цилиндра будет неодинако­вой. Чтобы получить деформацию ε в сечении х, нужно устремить Δx к нулю. Таким образом,

 

 


 (символ частной производной взят потому, что зависит не только от x, но и от t).

Наличие деформации растяжения свидетельствует о существо­вании нормального напряжения σ, при малых деформациях про­порционального величине деформации. Согласно формуле (14.6) 1-го тома

 

(E – модуль Юнга среды). Отметим, что относительная деформа­ция        , аследовательно, и напряжение σ в фиксированный мо­мент времени зависят от х (рис. 5.2). Там, где отклонения частиц от положения равновесия максимальны, деформация и напряжение равны нулю. В местах, где частицы проходят через положение равновесия, деформация и напряжение достигают максимального значения, причем положительные и отрицательные деформации (т. е. растяжения и, сжатия) чередуются друг с другом. В соответ­ствии с этим, как уже отмечалось в §1. продольная волна состоит из чередующихся разрежений и сгущений среды.

Обратимся снова к цилиндрическому объему, изображенному на рис. 5.1, и напишем для него уравнение движения. Полагая Δx очень малым, проекцию ускорения на ось x можно считать для всех точек цилиндра одинаковой и равной            . Масса цилиндра рав­на ρSΔx, где ρ – плотность недеформированной среды. Проек­ция на ось x силы, действующей на цилиндр, равна произведению площади основания цилиндра S на разность нормальных напря­жений в сечениях (x+Δx+ξ+Δξ) и (x+ξ):

 

 

 


Значение производной      в сечении x+δ можно для малых δ представить с большой точностью в виде

 

 


где под             подразумевается значение второй частной произ­водной ξ по х в сечении х .

Ввиду малосги величин Δx, ξ и Δξ произведем в выражении (5.3) преобразование (5.4):

 

 

 

 


 

< Δx
<
(относительное удлинение        при упругих деформациях бывает много меньше единицы. Поэтому Δξ     , так что слагаемым Δξ в сумме Δx+Δξ, можно пренебречь).

Подставив найденные значения массы, ускорения и силы в уравнение второго закона Ньютона, получим

 

Наконец, сократив на SΔx, придем к уравнению

 

 

которое представляет собой волновое уравнение, написанное для случая, когда ξ не зависит от у и z. Сопоставление уравнений (4.7) и (5.6) дает, что

 
υ =

 


Таким образом, фазовая скорость продольных упругих волн равна корню квадратному из модуля Юнга, деленного на плотность среды. Аналогичные вычисления для поперечных волн приводят к выражению

 
υ =

 

 


где G – модуль сдвига.

Энергия упругой волны

Пусть в некоторой среде распространяется в направлении оси х плоская продольная волна

x = a cos ( wtkx  + a )

Выделим в среде элементарный объем ΔV, настолько малый, чтобы скорость движения и деформацию во всех точках этого объема можно было считать одинаковыми и равными, соответственно,              и     .

Выделенный нами объем обладает кинетической энергией

 

(ρΔV – масса объема,      – его скорость).

Согласно формуле (25.4) 1-го тома рассматриваемый объем обладает также потенциальной энергией упругой деформации

 

(ε =   – относительное удлинение цилиндра, Е — модуль Юнга среды). Заменим в соответствии с (5.7) модуль Юнга через ρυ2 (ρ – плотность среды, υ – фазовая скорость волны). Тогда выражение для потенциальной энергии объема ΔV примет вид

 

 

Выражения (6.2) и (6.3) в сумме дают полную энергию

 

 

Разделив эту энергию на объем ΔV, в котором она содержится, получим плотность энергии

 
w

 

 


Дифференцирование уравнения (6.1) один раз по t, другой раз по x дает

 

 

Подставив эти выражения в формулу (6.4) и приняв во внимание, что k2υ2 = ω2, получим

 
(6.5)


В случае поперечной волны для плотности энергии получается та­кое же выражение.

(6.6)
Из (6.5) следует, что плотность энергии в каждый момент времени в разных точках пространства различна. В одной и той же точке плотность энергии изменяется со временем по закону квад­рата синуса. Среднее значение квадрата синуса равно 1/2. Соот­ветственно среднее по времени значение плотности энергии в каж­дой точке среды равно

 

 

Плотность энергии (6.5) и ее среднее значение (6.6) пропорцио­нальны плотности среды ρ, квадрату частоты ω и квадрату ампли­туды волны а. Подобная зависимость имеет место не только для незатухающей плоскости волны, но и для других видов волн (плос­кой затухающей, сферической и т. д.).

(6.7)
Итак, среда, в которой распространяется волна, обладает до­полнительным запасом энергии. Эта энергия доставляется от ис­точника колебаний в различные точки среды самой волной; следо­вательно, волна переносит с собой энергию. Количество энергии, переносимое волной через некоторую поверхность в единицу вре­мени, называется потоком энергии через эту поверх­ность. Если через данную поверхность переносится за время dt энергия dW, то поток энергии Φ равен

 

 

Поток энергии – скалярная величина, размерность которой равна размерности энергии, деленной на размерность времени, т. е. сов­падает с размерностью мощности. В соответствии с этим Φ измеря­ется в ваттах, эрг/с и т. п.

Поток энергии в разных точках среды может быть различной интенсивности. Для характеристики течения энергии в разных точках пространства вводится векторная величина, называемая плотностью потока энергии. Эта величина численно равна потоку энергии через единичную площадку, помещенную в данной точке перпендикулярно к направлению, в котором пере­носится энергия. Направление вектора плотности потока энергии совпадает с направлением переноса энергии.

Пусть через площадку    , перпендикулярную к направлению распространения волны, переносится за время Δt энергия ΔW. Тогда плотность потока энергии равна

 
(6.8)

 


(см. (6.7)). Через площадку        (рис. 6.1) будет перенесена за время Δt энергия ΔW, заключенная в объеме цилиндра с основа­нием   и высотой υΔt (υ – фазовая скорость волны). Если размеры цилиндра достаточно малы (за счет малости        и Δt) для того, чтобы плотность энергии во всех точках цилиндра можно было считать одинаковой, то ΔW можно найти как произведение плотности энергии w на объем цилиндра, равный    υΔt:

 

 

Подставив это выражение в формулу (6.8), получим для плот­ности потока энергии:

     
 
(6.9)
 
(6.10)
(6.11)
(6.12)

 


Наконец, введя вектор v, модуль которого равен фазовой скорости волны, а направление совпадает с направлением распростране­ния волны (и переноса энергии), можно написать

 j = wv

Рис.6.2
Рис.6.1
     
 

Мы получили выражение для вектора плотности потока энер­гии. Этот вектор был впервые введен в рассмотрение выдающимся русским физиком Н. А. Умовым и называется вектором Умова. Вектор (6.10), как и плотность энергии w, различен в разных точках про-

 

странства, а в данной точке изменяется со временем по закону квадрата синуса. Его среднее значение равно

 

(см. (6.6)). Выражение (6.11), так же как и (6.6), справедливо для волны любого вида (сферической, затухающей и т. д.).

Отметим, что, когда говорят об интенсивности волны в данной точке, то имеют в виду среднее по времени значение плот­ности потока энергии, переносимой волной.

Зная j во всех точках произвольной поверхности S, можно вычислить поток энергии через эту поверхность. С этой целью разо­бьем поверхность на элементарные участки dS. За время dt через площадку dS пройдет энергия dW, заключенная в изображенном на рис. 6.2 косом цилиндре. Объем этого цилиндра равен dV = υ dt dS cosφ . В нем содержится энергия dW = w dV = w υ dtdS cos φ (w — мгновенное значение плотности энергии в том месте, где рас­положена площадка dS). Приняв во внимание, что

w υ dS cos φ = j dS cos φ = j dS

(dS = n dS; см. рис. 6.2), можно написать: dW = j dS dt. Отсюда для потока энергии dΦ через площадку dS получается формула

 

(6.13)
(6.14)
(ср. с формулой (11.5)). Полный поток энергии через поверхность равен сумме элементарных потоков (6.12):

 

В соответствии с (11.7) можно сказать, что поток энергии равен потоку вектора j через поверхность S.

Заменив в формуле (6.13) вектор j его средним по времени значением, получим среднее значение Φ:

 

Вычислим среднее значение потока энергии через произвольную волновую поверхность незатухающей сферической волны. В каж­дой точке этой поверхности векторы j и dS совпадают по направле­нию. Кроме того, модуль вектора j для всех точек поверхности оди­наков. Следовательно,

 

(r — радиус волновой поверхности). Согласно (6.11)                             . Таким образом,

 

(ar – амплитуда волны на расстоянии r от источника). Поскольку энергия волны не поглощается средой, средний поток энергии че­рез сферу любого радиуса должен иметь одинаковое значение, т. е. должно выполняться условие

 

Отсюда следует, что амплитуда а, незатухающей сферической волны обратно пропорциональна расстоянию r от источника волны (см. формулу (5.10)). Соответственно средняя плотность потока энергии           обратно пропорциональна квадрату расстояния от источника.

В случае плоской затухающей волны амплитуда убывает с рас­стоянием по закону a = = a0 e-γx (см. (2.9)). Соответственно средняя плотность потока энергии (т. е. интенсивность волны) убывает по

 
(6.15)

Здесь c = 2γ – величина, называемая коэффициентом поглощения волны. Она имеет размерность, обратную размерности длины. Легко сообразить, что величина, обратная c, равна расстоянию, на котором интенсивность волны уменьшается в е раз.

Стоячие волны

Если в среде распространяется одновременно несколько волн, то колебания частиц среды оказываются геометрической суммой колебаний, которые совершали бы частицы при распространении каждой из волн в отдельности. Следовательно, волны просто накладываются одна на другую, не возмущая друг друга. Это утверждение называется принципом суперпозиции (наложения) волн.

В случае, когда колебания, обусловленные отдельными волна­ми в каждой из точек среды, обладают постоянной разностью фаз, волны называются когерентными. При сложении когерентных волн возникает явление интерференции, заключающееся в том, что колебания в одних точках усиливают, а в других точках ослабляют друг друга.

Очень важный случай интерференции наблюдается при нало­жении двух встречных плоских волн с одинаковой амплитудой. Возникающий в результате колебательный процесс называется стоячей волной. Практически стоячие волны возникают при отражении волн от преград. Падающая на преграду волна и бегущая ей навстречу отраженная волна, налагаясь друг на друга, образуют стоячую волну.

Напишем уравнения двух плоских волн, распространяющихся вдоль оси х в противоположных направлениях:

x1 = a cos ( wtkx  + a1 ),          x2 = a cos ( wt + kx  + a2 ).

 

(7.2)
(7.1)
Сложив вместе эти уравнения и преобразовав результат по формуле для суммы косинусов, получим

 

 

Уравнение (7.1) есть уравнение стоячей волны. Чтобы упростить его, выберем начало отсчета х так, чтобы разность α1 – α2 стала равной нулю, а начало отсчета t — так, чтобы оказалась равной нулю сумма α1 – α2. Кроме того, заменим волновое число k его значением 2π/λ. Тогда уравнение (7.1) примет вид

 

Из (7.2) видно, что в каждой точке стоячей волны происходят колебания той же частоты, что и у встречных волн, причем ампли­туда зависит от х :

 

 

В точках, координаты которых удовлетворяют условию 2πx/λ = ± nπ (n Î N) – (3.3), амплитуда колебаний достигает максимального значения. Эти точки называются пучностями стоячей волны. Из (3.3) получаются значения координат пучностей:

 
(7.4)

 

 


Следует иметь в виду, что пучность представляет собой не одну единственную точку, а плоскость, точки которой имеют значения координаты x, определяемые формулой (7.4).

В точках, координаты которых удовлетворяют условию

 

 

амплитуда колебаний обращается в нуль. Эти точки называются узлами стоячей волны. Точки среды, находящиеся в узлах, колебаний не совершают. Координаты узлов имеют значения

 
(7.5)

 

 


Узел, как и пучность, представляет собой не одну точку, а плос­кость, точки которой имеют значения координаты х , определяе­мые формулой (7.5).

2acos(2px/l)
Из формул (7.4) и (7.5) следует, что расстояние между сосед­ними пучностями, так же как и расстояние между соседними узла­ми, равно l/2. Пучности и узлы сдвинуты друг относительно друга на четверть длины волны.

Обратимся снова к уравнению (7.2). Множитель                             при переходе через нулевое значение меняет знак. В соответствии с этим фаза колебаний по разные стороны от узла отличается на p. Это означает, что точки, лежащие по разные стороны от узла, ко­леблются в противофазе. Все точки, заключенные между двумя со­седними узлами, колеблются синфазно. На рис. 7.1 дан ряд «моментальных фотографий» отклонений точек от положения равновесия. Первая «фотография» соответствует моменту, когда отклонения достигают наибольшего абсолютного значения. Последующие «фотографии» сделаны с интервалами в четверть периода. Стрелками показаны скорости частиц.

Продифференцировав уравнение (7.2) один раз по t , а другой раз по х , найдем выражения для скорости частиц    и для дефор­мации среды e:

 
(7.6)
(7.7)

 

 


 


Уравнение (7.6) описывает стоячую волну скорости, а (7.7) – стоячую волну деформации.

На рис. 7.2 сопоставлены «моментальные фотографии» смеще­ния, скорости и деформации для моментов времени 0 и T/4. Из графиков видно, что узлы и пучности скорости совпадают с узлами и пуч­ностями смещения; узлы же и пучно­сти деформации совпадают соответ­ственно с пучностями и узлами сме­щения. В то время как x и ε достигают максимальных значений, обраща­ется в нуль, и наоборот. Соответст­венно дважды за период происходит превращение энергии стоячей волны то полностью в потенциаль­ную, сосредоточенную в основном вблизи узлов волны (где нахо­дятся пучности деформации), то полностью в кинетическую, со­средоточенную в основном вблизи пучностей волны (где находятся пучности скорости). В результате происходит переход энергии от каждого узла к соседним с ним пучностям и обратно. Средний по времени поток энергии в любом сечении волны равен нулю.


Дата добавления: 2019-07-15; просмотров: 247; Мы поможем в написании вашей работы!

Поделиться с друзьями:






Мы поможем в написании ваших работ!