Ортогональные матрицы из собственных векторов



 

Из правых собственных векторов можно составить матрицу T, а из левых – матрицу , которые обладают уникальными свойствами по отношению к матрице A.

 

 

Умножив матрицу A слева на матрицу , а справа – на матрицу T , после несложных преобразований получим:

 

 

.


Каждое скалярное произведение  в матрице, принимая во внимание линейную независимость собственных векторов, полученных для различных собственных значений, можно преобразовать так:

 

 

Поэтому, результатом преобразования матрицы A будет диагональная матрица с собственными значениями, расположенными на диагонали:

 

 

Если вместо A взять единичную матрицу и проделать аналогичные преобразования, то станет очевидным равенство , откуда следует . Последнее позволяет для преобразования матрицы A в диагональную обходиться только системой правых собственных векторов-столбцов:

 

 

Последнее показывает, что умножение матрицы A на  слева и на S справа, где S – произвольная не особая матрица, преобразует ее в некоторую матрицу B, которая имеет определитель, равный определителю матрицы A. Такие преобразования матриц называют эквивалентными (подобными).

Продолжая использовать T-матрицу, несложно получить следующие важные результаты:


.

 

Функции с матричным аргументом

 

Пусть теперь задана некоторая матричная функция от матрицы A:

 

 

 

.

 

С другой стороны очевидно и обратное

 

 

,

 

где  – матрица с одной единицей на i-том месте диагонали ( ).


 

 

где  – проекторы матрицы A, образуемые умножением одноименных правых и левых собственных векторов по правилам умножения прямоугольных матриц с размерами соответственно  и . Сумма проекторов .

Проекторы обладают свойствами идемпотентных матриц, т.е. матриц, все степени которых равны первой. Для невырожденных проекторов ( ) матрицы A ( ) справедливо:

 

 

Представление функции от матрицы A в виде взвешенной суммы проекций называется спектральным разложением матричной функции по собственным значениям матрицы A:

 

.


Если в качестве матричных функций взять  и , то их спектральные разложения будут следующими:

 

 

Вычисление проекторов матрицы

 

Проекторы матрицы можно также вычислить, воспользовавшись интерполяционным многочленом Лагранжа с матричным аргументом:

 

 

По известному спектру  проекторы матрицы можно найти и методом неопределенных коэффициентов. Для чего выбирают такие функции от матрицы A, которые вычисляются очевидным образом, например, такие:

 

Записывая разложение для каждой функции, получим следующую систему линейных уравнений относительно проекторов:

 

 

В случае, когда в спектре матрицы имеются кратные собственные значения, вычисление проекторов осуществляется по интерполяционным формулам Лагранжа, учитывающим еще и заданные значения производных в отдельных точках. Разложение матричной функции по значениям ее на спектре в этом случае имеет вид:


 

где  – значения i-тых произ-водных функции в точках, соответствующих различным (не кратным) корням характеристического многочлена,

 – число кратных корней ,

 – проекторы кратных корней, в выражении которых содержатся

 – проекторы различных корней.

 


Дата добавления: 2019-07-15; просмотров: 149; Мы поможем в написании вашей работы!

Поделиться с друзьями:






Мы поможем в написании ваших работ!