Решение примерного варианта контрольной работы №1



 

Задача 1. Дана функция z = cos2(2xy). Требуется:

1) найти частные производные  и ;

2) найти полный дифференциал dz;

3) показать, что для данной функции справедливо равенство: .

Решение.

1) При нахождении  считаем аргумент y постоянным:

= (cos2(2x – y))  = 2cos(2x – y)(cos(2x y))  =

= 2cos(2x – y)(sin(2x – y))(2x y)  = 2cos(2x – y)sin(2x – y)((2x)  – (y) ) =

= 2cos(2x – y)sin(2x – y)(2 – 0) =  sin(2(2xy))2 = 2sin(4x – 2y).

При нахождении  считаем аргумент x  постоянным:

 = (cos2(2x y))  = 2cos(2x y)(cos(2x y))  =

= 2cos(2x y)(–sin(2xy))(2x y)   = –2cos(2x y)sin(2xy)((2x)   – (y) ) =

= – sin(2(2xy))(0 – 1) = sin(4x – 2y).

2) По формуле (1) находим полный дифференциал функции:

dz =  = –2sin(4x – 2y)dx + sin(4x – 2y)dy.

3) Найдем смешанные частные производные второго порядка.

Для того, чтобы найти , дифференцируем  по у:

 =  = (–2sin(4x – 2y))  = [считаем x постоянным] =

= – 2cos(4x – 2y)(4x – 2y)  = – 2cos(4x – 2y)(0 – 2) = 4cos(4x – 2y).

Для того, чтобы найти , дифференцируем  по x:

 =  = (sin(4x – 2y))  = [считаем y постоянным] =

= cos(4x – 2y)(4x – 2y)  = cos(4x – 2y)(4 – 0) = 4cos(4x – 2y).

Получили:  = 4cos(4x – 2y),  = 4cos(4x – 2y) .

Ответы:  1) = –2sin(4x – 2y);  = sin(4x – 2y);

2) dz = –2sin(4x – 2y)dx + sin(4x – 2y)dy;

3) равенство  выполнено.

 

Задача 2. Найти частные производные ,   и , если переменные x, y, и z связаны равенством 4x2 y e z – cos(x3z) + 2y2 + 3x = 0.

Решение.

Имеем равенство вида F(x, y, z) = 0, задающее неявно функцию 2-х переменных. Для вычисления частных производных  можно использовать формулы (2) и (3).

Для F(x, y, z) = 4x2ye z – cos(x3z) + 2y2 + 3x получаем:

F = (4x2ye z – cos(x3z) + 2y2 + 3x)  = [считаем y и z постоянными]=

= 8xye z + sin(x3z)3x2 + 3 = 8xye z + 3x2sin( x3z) + 3;

F = (4x2ye z – cos(x3z) + 2y2 + 3x)  = [считаем x и z постоянными] =

= 4x2e z + 4y;

F  = (4x2ye z – cos(x3z) + 2y2 + 3x)  = [считаем x и y постоянными] =

= 4x2ye z – sin (x3z).

По формулам (2) находим частные производные функции z = z(x,y):

;  

По формуле (3) получаем частную производную функции y = y(x, z):

.

Ответы: ; ;

.

 

Задача 3. Дана сложная функция z = ln(2tx2y), где x = cos3t, .  Найти полную производную .

Решение. Используя формулу (4), получаем:

.

Подставив в полученный результат x = cos3t, , получим выражение полной производной  через независимую переменную t:

Ответ: .

 

Задача 4. Дана функция двух переменных: z = x2xy + y2 – 4x + 2y + 5 и уравнения границ замкнутой области D на плоскости x О y: x = 0, y = –1,

x + y = 3. Требуется:

1) найти наибольшее и наименьшее значения функции z в области D;

2) сделать чертеж области D в системе координат, указав на нем точки, в которых функция имеет наибольшее и наименьшее значения.

Решение.

1) Для наглядности процесса решения построим область D в системе координат. Область D представляет собой треугольник, ограниченный прямыми  x = 0, y = –1 и x + y = 3. Обозначим вершины треугольника: A, B, C (рис 9).

Чтобы найти наибольшее и наименьшее значения функции  z, сначала найдем все стационарные точки функции z = x2xy + y2 – 4x + 2y + 5, лежащие внутри области D (если они есть), и вычислим в них значения функции.

Стационарные точки – это точки, в которых все частные производные

1-го порядка равны нулю:

Решаем систему:

     Стационарная точка М(2, 0)  (рис. 9) и является внутренней точкой области. Вычислим значение функции в этой точке:

.

     Теперь найдем наибольшее и наименьшее значения функции на границе области D. Граница является кусочно-заданной, поэтому будем проводить исследование функции z (x, y) отдельно на каждом участке границы.

а) Уравнение участка АВ имеет вид:  и функция z является функцией одной переменной у:

.

Исследуем поведение z1(y) по правилам нахождения наибольшего и наименьшего значений функции одной переменной на замкнутом промежутке. Как известно, непрерывная функция на замкнутом промежутке достигает своих наибольшего и наименьшего значений либо на концах промежутка, либо в стационарных точках внутри промежутка (если они есть).

Исследуем поведение функции z1(y) на участке АВ:  – стационарная точка на границе АВ, совпадающая с левым концом промежутка. Сравнивая значения функции z1(A) = z1(–1) = 4, z1(B) = z1(3) = 20, получаем: .

б) Уравнение участка АС имеет вид:  и функция z является

функцией одной переменной x:

.

Исследуем поведение функции z2(х) на участке АС:  – стационарная точка на границе АС, лежащая внутри промежутка. Сравнивая значения функции z2(A) = z1(А) = 4,  z2(С) = z2(4) = 8  и  z2(х0) = z2(1,5) =1,75, получаем: .

в) Уравнение участка ВС имеет вид:  и функция z является функцией одной переменной х:

Исследуем поведение функции z3(х) на участке ВС:  – стационарная точка на границе ВС, лежащая внутри промежутка. Сравнивая значения функции

z3(В) = z1(В) = 20,  z3(С) = z2(С) = 8  и  z3(х1) = z3(2,5) =1,25,

получаем: .

    Сравнивая все найденные значения функции, выбираем среди них наибольшее и наименьшее значения функции z (x, y) в области D:

zнаиб = z(В) = 20,  zнаим = z(М) = 1.

2) Отметим на построенном ранее чертеже области D (рис. 9) точки, в которых функция имеет наибольшее и наименьшее значения: В(0,3) и М(2,0), а также все найденные в процессе решения точки, указав значения функции z(x,y) в этих точках.

Ответы: 1) zнаиб = z(В) = z(0,3) = 20,  zнаим = z(М) = z(2,0) = 1;  2) рисунок 9.

 

Задача 5. Поверхность σ задана уравнением z =  + xy – 5x3. Составить уравнения касательной плоскости и нормали к поверхности σ в точке М0(x0, y0, z0), принадлежащей ей, если x0 = –1,  y0 = 2.

Решение.

Уравнения касательной плоскости и нормали к поверхности σ получим, используя формулы (5) и (6).  Найдем частные производные функции

z = f (x, y) =  + xy – 5x3:

(x, y) = (  + xy – 5x3)  = –  + y – 15x2;

(x, y) = (  + xy – 5x3)  =  + x.

Точка М0(x0, y0, z0) принадлежит поверхности σ, поэтому можно вычислить z0, подставив заданные x0 = –1 и  y0 = 2 в уравнение поверхности:

z =  + xy – 5x3  z0 =  + (–1) 2 – 5 (–1)3 = 1.

Вычисляем значения частных производных в точке М0(–1, 2, 1):

(М0) = –  + 2 – 15(–1)2 = –15; (М0) =  – 1 = –2.

Пользуясь формулой (5), получаем уравнение касательной плоскости к поверхности σ в точке М0:

z – 1= –15(x + 1) – 2(y – 2)   15x + 2y + z + 10 = 0.

Пользуясь формулой (6), получаем канонические уравнения нормали к поверхности σ в точке М0:  =  = .

Ответы: уравнение касательной плоскости: 15x + 2y + z + 10 = 0; уравнения нормали:  =  = .

Задача 6. Дано плоское скалярное поле U = x2 –2y, точка М0(1,–1) и вектор . Требуется:

1) найти уравнения линий уровня поля;

2) найти градиент поля в точке M0 и производную  в точке M0 по направлению вектора ;

3) построить в системе координат x О y 4-5 линий уровня, в том числе линию уровня, проходящую через точку M0, изобразить вектор  на этом чертеже.

Решение.

1) Для U = x2 – 2y  уравнение семейства линий уровня имеет вид

x2 – 2y = С или y =  – , где С – произвольная постоянная. Это семейство парабол, симметричных относительно оси Oy (ветви направлены вверх) с вершинами в точках (0, – ).

2) Найдем частные производные функции U = x2 – 2y:

 = (x2 2y)  = 2x,  = (x2 2y)  = – 2.

В точке М0(1,–1) значения частных производных: , .

По формуле (7) находим градиент поля в точке M0:

.

Прежде, чем найти производную по направлению вектора = = {2; – 1}, вычислим его модуль и направляющие косинусы:

, .

Производную поля по направлению вектора  в точке М0 вычисляем

по формуле (8): .

3) Для построения линий уровня  в системе координат x О y подставим в уравнение семейства линий уровня y =  –  различные значения С:

при С = 0 получим y = – уравнение линии уровня, соответствующей значению U = 0;

при С = 2 получим y =  + 1 (для U = 2);

при С = 2 получим y =  1 (для U = 2);

при С = 4 получим y =  + 2, и т.д.

Получим уравнение линии уровня, проходящей через точку М0(1,–1). Для этого вычислим значение функции U в этой точке: .

Построим эти линии в системе координат x О y  (рис. 10).

Для построения градиента поля в точке M0 нужно отложить от точки М0 проекции градиента в направлениях координатных осей и построить вектор  по правилу параллелограмма.

В данном случае , поэтому откладываем от точки М0(1,– 1) две единицы вдоль оси Ox, две единицы в направлении, противоположном оси Oy и получаем вектор  как диагональ параллелограмма, построенного на векторах  и  (рис. 10).

Ответы: 1) x2 – 2y = С; 2) , ;

3) линии уровня и  на рисунке 10.

Задача 7. Дана функция комплексной переменной , где z = x + iy, и точка z0 = – 1 + 3i. Требуется:

1) представить функцию в виде w = u(x,y) +iv(x,y), выделив ее действительную и мнимую части;

2) проверить, является ли функция w аналитической;

3) в случае аналитичности функции w найти ее производную w′ в точке z0.

Решение.

1) Выделим действительную и мнимую части функции:

.

2) Чтобы установить аналитичность функции w, проверим выполнение условий Коши-Римана (10):

Получили: . Условия Коши-Римана выполняются во всех точках, кроме особой точки z = 2i, в которой функции  x = 0, y = 2 и функции u(x, y) и v(x, y)  не определены. Следовательно, функция  – аналитическая при .

3) Найдем производную функции:

.

Вычислим значение производной функции в точке z0 = – 1 + 3i.

Ответы:

1) ;

2) функция  аналитическая при ;

3) .

 


Дата добавления: 2019-02-22; просмотров: 175; Мы поможем в написании вашей работы!

Поделиться с друзьями:






Мы поможем в написании ваших работ!