Расстроенный врач и больной гений 6 страница



Конические сечения называются так потому, что их можно получить, пересекая конус плоскостью. Точнее говоря — двойной конус, похожий на два рожка мороженого, соединенных своими острыми концами. Одинарный конус образован набором отрезков прямых линий, которые все пересекаются в одной точке и проходят через определенную окружность — «основание» конуса. Но в греческой геометрии прямолинейный отрезок всегда можно продолжить неограниченно далеко, и в результате получается двойной конус.

Три основных типа конических сечений — это эллипс, парабола и гипербола. Эллипс представляет собой замкнутую овальную кривую, которая возникает, когда секущая плоскость проходит только через одну половину двойного конуса. (Окружность является частным случаем эллипса и получается, когда секущая плоскость в точности перпендикулярна оси конуса.) Гипербола состоит из двух симметрично расположенных незамкнутых кривых, которые в принципе уходят на бесконечность; она возникает, когда секущая плоскость проходит через обе половины двойного конуса. Парабола является переходной формой — это одна незамкнутая кривая, получающаяся, когда секущая плоскость параллельна какой-либо из прямых, лежащих на поверхности конуса.

На большом расстоянии от вершины конуса кривые, составляющие гиперболу, проходят все ближе и ближе к двум прямым линиям, которые параллельны тем прямым, где конус пересекла бы параллельная плоскость, проходящая через вершину. Эти прямые называются асимптотами.

 

 

Конические сечения.

 

Греческие геометры широко изучали конические сечения, и в этом и состоит их основной вклад в прогресс за рамками тех идей, что были зафиксированы Эвклидом. Эти кривые жизненно важны и в современной математике, но по причинам, сильно отличным от тех, что двигали греками. С алгебраической точки зрения они представляют собой следующие по степени простоты кривые после прямых линий. Они важны и в прикладной науке. Орбиты планет в Солнечной системе являются эллипсами, как это заключил Кеплер на основе наблюдений Тихо Браге за Марсом. Эллиптичность орбит послужила одним из соображений, которые привели Ньютона к формулировке его знаменитого «закона обратных квадратов» для гравитации. Это в свою очередь позволило понять, что целый ряд аспектов нашей вселенной ясно проявляет математические закономерности. Это радикально отразилось на астрономии, поскольку движения планет стали поддаваться вычислениям.

 

Большинство сохранившихся математических работ Омара посвящены теории уравнений. Он рассматривал решения двух типов. Первые, в духе Диофанта, он называл алгебраическими решениями в целых числах; пожалуй, больше подошло бы прилагательное «арифметические». Решения второго вида он называл геометрическими, под чем он понимал, что решение можно построить геометрическими средствами в терминах конкретных длин, площадей или объемов.

Свободно пользуясь коническими сечениями, Омар разработал геометрические решения для всех кубических уравнений и разъяснил их в своей книге «Алгебра», законченной в 1079 году. Поскольку отрицательные числа в то время еще не получили права на существование, уравнения приходилось каждый раз устраивать таким образом, чтобы все слагаемые оказывались положительными.

Это правило привело к возникновению огромного числа различных случаев, которые в наши дни все рассматриваются как по сути дела единственный случай, если не считать знаков при числах. Омар различает четырнадцать различных типов кубических уравнений в зависимости от того, какие слагаемые появляются в каждой части уравнения. Его классификация кубических уравнений такова:

 

куб = квадрат + сторона + число,

куб = квадрат + число,

куб = сторона + число,

куб = число,

куб + квадрат = сторона + число,

куб + квадрат = число,

куб + сторона = квадрат + число,

куб + сторона = число,

куб + число = квадрат + сторона,

куб + число = квадрат,

куб + число = сторона,

куб + квадрат + сторона = число,

куб + квадрат + число = сторона,

куб + сторона + число = квадрат.

 

Каждое из указанных слагаемых должно иметь положительный численный коэффициент.

Вы, возможно, недоумеваете, почему в списке нет случаев типа

 

куб + квадрат = сторона.

 

Причина в том, что в этих случаях можно разделить обе части уравнения на неизвестное, в результате чего уравнение сведется к квадратному.

 

Омар изобрел свои решения не полностью самостоятельно, а основываясь на предшествующих греческих методах решения различных типов кубических уравнений с использованием конических сечений. Он систематически развил эти идеи и решил такими методами все четырнадцать типов кубических уравнений. Предшествующие математики, как он заметил, нашли решения в ряде случаев, но все их методы были очень специальными и каждый случай требовал отдельного построения; до Омара никто не изучал весь охват возможных случаев, не говоря уж о том, чтобы дать их решения. «Я же, напротив, никогда не ослабевал в своем желании сделать известными, притом со всей точностью, все возможные случаи и в каждом из них провести различие между возможным и невозможным». Под «невозможным» он понимал отсутствие положительного решения. Чтобы получить представление о его работе, приведем его решение случая «куб, некоторые стороны и некоторые числа равны некоторым квадратам», что мы бы записали как

 

x 3 + bx + c = ax 2.

 

(Поскольку нас не заботит положительность или отрицательность, мы бы, скорее всего, перенесли член из правой части в левую с изменением знака; получив таким образом уравнение x 3 − ax 2 + bx + c =  0.)

Омар снабжает своих читателей инструкциями, состоящими в следующей последовательности шагов. (1) Проводим три отрезка с длинами c/b , √b и a так, чтобы образовался прямой угол. (2) Проводим полуокружность, диаметр которой — горизонтальный отрезок. Продолжаем вертикальные прямые до пересечения с ней. Если жирный вертикальный отрезок имеет длину d , добиваемся, чтобы отрезок жирной горизонтальной прямой имел длину cd/√b . (3) Проводим гиперболу (сплошная линия), асимптоты которой (те специальные прямые, к которым приближается гипербола) — серые прямые, проходящие через только что построенную точку. (4) Находим, где гипербола пересекает полуокружность. Тогда длины двух жирных отрезков, обозначенные как x , дают два (положительных) решения кубического уравнения.

 

 

Данное Омаром Хайямом решение кубического уравнения.

 

Подробности, как всегда, не так важны, как общий стиль. Выполняем ряд эвклидовых построений циркулем и линейкой, потом прибегаем к помощи гиперболы, потом еще немного эвклидовых построений — и готово.

Омар дает аналогичные конструкции для решения каждого из своих четырнадцати случаев и доказывает, что решения верны. В его анализе есть несколько дыр: при некоторых значениях коэффициентов a, b и c требуемые в его построении точки не существуют. В приведенном выше построении, например, гипербола может вообще не пересекать полуокружность. Но если отбросить эти придирки, он выполнил впечатляющую и очень систематическую работу.

Некоторые из образов в поэзии Омара являются математическими и, как представляется, содержат аллюзии на его собственные работы, в тоне возражений самому себе, который проходит через все его творчество:

 

Умом ощупал я все мирозданья звенья,

Постиг высокие людской души паренья,

И, несмотря на то, уверенно скажу:

Нет состояния блаженней опьяненья.

 

Одно особенно впечатляющее четверостишие звучит так:

 

Кто мы? Куклы на нитках, а кукольщик наш — небосвод.

Он в большом балагане своем представленье ведет.

Он сейчас на ковре бытия нас попрыгать заставит,

А потом в свой сундук одного за другим уберет.

 

Это напоминает знаменитую платоновскую аллегорию теней на стене пещеры и подходит равным образом для описания и символьных вычислений в алгебре, и человеческой натуры. Омар был талантливым летописцем и того и другого.

 

Глава 4

Ученый игрок

 

«Клянусь святым Евангелием Господа нашего и как истинный человек чести не только никогда не публиковать ваши открытия, если вы мне доверите их, но да будет моя вера истинного христианина вам порукой, что я зашифрую их так, чтобы после моей смерти никто не смог их понять». Этот торжественный обет был, как говорят, дан в 1539 году.

Италия эпохи Возрождения была колыбелью нового, и математика не составляла исключения. В иконоборческом духе того времени математики Ренессанса задались целью преодолеть ограничения древней математики. Один из них разрешил загадку кубического уравнения и теперь обвинял другого в воровстве своего секрета.

Гневающегося математика звали Никколо Фонтана по прозвищу Тарталья — Заика. В воровстве интеллектуальной собственности обвинялся математик, врач, неисправимый плут и закоренелый азартный игрок по имени Джироламо Кардано, также известный как Жером Кардан. Около 1520 года Джироламо, как истинный блудный сын, успешно растратил наследство, оставленное ему отцом. Разорившись, он обратился к азартным играм как к источнику дохода, найдя эффективное примененное своих математических способностей для оценки шансов на выигрыш. Он водился с сомнительной компанией; как-то раз, заподозрив другого игрока в нечестной игре, он полоснул его ножом по лицу.

То были суровые времена, и Джироламо был суровым человеком. А кроме того — на редкость оригинальным мыслителем и автором одного из наиболее знаменитых и влиятельных текстов по алгебре во всей истории.

 

О Джироламо нам известно много, потому что в 1575 году он сам рассказал нам о себе в «Книге моей жизни». Начинается она так:

 

Эту Книгу Моей Жизни я намереваюсь написать, следуя примеру Антонина Философа[12], прославленного как мудрейший и достойнейший из людей, хорошо понимая, что ни одно деяние смертных не совершенно, а еще менее того — свободно от злословия; однако сознавая при этом и то, что из всего, что человеку дано достичь, ничто другое не доставляет больше радости и не ценится сильнее, чем познание истины.

Ни единого слова, спешу заверить, не было добавлено в угоду тщеславию, и ни единого для пустого приукрашивания; вместо того, насколько возможно, здесь собрано только пережитое, события, о которых мои ученики… были осведомлены или в коих они принимали участие. Эти краткие эпизоды моей истории в свою очередь записаны были мною в повествовательной форме, дабы стать частью этой книги.

 

Как и многие математики того времени, Джироламо занимался астрологией, так что он отмечает астрологические обстоятельства, сопутствовавшие его рождению:

 

Хотя, как я слышал, напрасно пытались применить различные абортивные средства, я нормально родился в 24-й день сентября года 1500, когда первый час ночи истек уже более чем наполовину, но менее чем на две трети… Марс угрожал обоим главным светилам из-за неблагоприятного их расположения и потому, что он был в четвертном аспекте с Луною…

Я легко мог родиться уродом, если бы не тот факт, что положение предыдущего соединения приходилось на 29° в Деве, где господствует Меркурий. И так как его положение не совпадало ни с местом Луны, ни с местом асцендента и он не находился в аспекте с предпоследним делением Девы, я непременно должен был бы родиться уродом, и даже легко могло случиться, что я выйду из утробы разорванным, чего едва и не произошло.

Так был я рожден, или, скорее, исторгнут мощными силами из чрева матери; я был почти мертв. Волосы мои были темны и завиты. Меня вернули к жизни ванной из теплого вина, которая могла бы оказаться гибельной для любого другого ребенка. Моя мать провела в тяготах три полных дня, и однако же я выжил[13].

 

Одна глава в «Книге моей жизни» перечисляет написанные Джироламо книги, и первой в списке идет «Великое искусство»[14] — один из трех упоминаемых им «трактатов по математике». Он также писал об астрономии, физике, вопросах морали, драгоценных камнях, воде, медицине, предсказаниях и теологии.

Однако для нашего рассказа важно только «Великое искусство». Подзаголовок этой книги — «Правила алгебры» — объясняет почему. В этой книге Джироламо не только собрал методы решения квадратных уравнений, известные вавилонянам, но и открыл новые решения кубических уравнений и уравнений четвертой степени. В отличие от решений Хайяма, которые опирались на геометрию конических сечений, решения в «Великом искусстве» были чисто алгебраическими.

 

Я уже упоминал о двух типах математических обозначений, которые оба видны в таких выражениях, как x 3 для куба неизвестного. Обозначение первого типа состоит в использовании букв (в нашем случае — x ) для чисел — или неизвестных, или известных, но произвольных. Обозначение второго типа — это использование приподнятых над строкой чисел для указания степени, так что верхняя 3 в данном случае обозначает куб числа x , то есть x×x×x. Теперь мы подошли к обозначениям третьего типа — последним из тех, что нам понадобятся.

Обозначение третьего типа очень милое и выглядит так: √. Этот символ означает квадратный корень. Например, √9 — квадратный корень из девяти — обозначает число, которое, будучи умножено на само себя, дает 9. Поскольку 3×3 = 9, мы видим, что √9 = 3. Однако не всегда все обстоит так просто. Наиболее печально известный квадратный корень, который, согласно не слишком правдоподобной легенде, оказался причиной того, что математика, привлекшего к нему внимание, — Гиппаса из Метапонта — выбросили с корабля за борт, — это квадратный корень из двух: √2. Его точное выражение в виде десятичной дроби требует неограниченного продолжения. Начинается оно так:

 

1,4142135623730950488…,

 

но не может на этом прекратиться , поскольку квадрат приведенного числа на самом деле равен

 

1,99999999999999999999522356663907438144,

 

что, очевидно, есть не вполне то же самое, что 2.

На этот раз известно, откуда взялось такое обозначение. Это искаженная буква «r», обозначающая «radix» — латинское слово «корень». Математики понимают его таким образом и читают выражение √2 как «корень из двух».

Кубические корни, корни четвертой, пятой и так далее степеней обозначаются помещением маленького приподнятого числа перед знаком «корень» — таким образом: 3√, 4√, 5√.

Кубический корень из данного числа — это такое число, куб которого дает исходное, и аналогично для других корней. Таким образом, кубический корень из 8 есть 2, поскольку 23 = 8. Кубический же корень из 2 можно выразить в виде десятичной дроби только приближенно. Он начинается таким образом:

 

1,2599210498948731648…

 

и продолжается, если вы запасетесь достаточным терпением, бесконечно.

Именно это число появляется в античной задаче об удвоении куба.

 

Примерно к 400 г. греческая математика утратила свое место на переднем крае этой науки.

Место действия переместилось на Восток — в Аравию, Индию и Китай. Европа погрузилась в «темные века», и хотя они были не такими уж темными, какими их нередко изображают, но все же темными в достаточной мере. Распространение христианства возымело тот плачевный побочный эффект, что знание и ученость сконцентрировались в церквях и монастырях. Многие монахи переписывали работы великих математиков, таких как Эвклид, но лишь очень немногие из них понимали, что они переписывают. Древние греки были в состоянии с двух сторон прорыть туннель через гору так, чтобы обеспечить встречу посередине; способ же, которым ранние англосаксы проводили землемерные работы, состоял в том, чтобы разложить в поле план в масштабе 1:1. Даже понятие изображения, сделанного в определенном масштабе, было утеряно. Если бы англосаксы пожелали создать точное изображение Англии, им пришлось бы сделать его размером с Англию. Их карты обычного размера были крайне неточными.

К концу пятнадцатого столетия фокус математической активности снова сдвинулся в сторону Европы. На Среднем и Дальнем Востоке подошел к концу заряд креативности, а Европа включила второе дыхание, освобождаясь от объятий Римской церкви и ее страха перед всем новым. По иронии судьбы новым центром интеллектуальной активности становится Италия — по мере того как Рим ослаблял хватку в своем собственном тылу.

Это тектоническое изменение в европейской науке и математике началось с публикации в 1202 году книги под названием Liber Abbaci , написанной Леонардо Пизанским, который много позднее получил прозвище Фибоначчи, сына Боначчио, под которым теперь и известен, несмотря на то что имя это придумали в девятнадцатом столетии. Отец Леонардо — Гильельмо — служил на таможне в Буджии (ныне в Алжире) и в своей работе неминуемо сталкивался с людьми самых разных культур. Он обучил своего сына новомодным знакам для чисел, изобретенным индусами и арабами, — предшественникам наших десятичных обозначений от 0 до 9. Леонардо позднее писал, что «мне так нравилось обучение, что я продолжал изучать математику во время поездок по работе в Египет, Сирию, Грецию, Сицилию и Прованс и получал особое удовольствие от дебатов с учеными из тех мест». На первый взгляд заглавие книги Леонардо говорит о том, что это книга — об абаке, т.е. механическом вычислительном приспособлении, состоящем из бусинок, скользящих по проволочкам, или же из галечных камешков, передвигаемых в песчаном желобе. Но как латинское слово calculus , относящееся к этой гальке , позднее приобрело другое, более техническое значение[15], так и слово abbaco — рамка для счета — стало обозначать искусство вычисления. Liber Abbaci была первым арифметическим текстом, в котором индоарабские символика и методы были принесены в Европу. Значительная часть книги отведена новым применениям арифметики к практическим предметам, подобным обмену валют.

Одна задача — об идеализированной модели роста популяции кроликов — привела к замечательной числовой последовательности 1, 1, 2, 3, 5, 8, 13, 21, 34, 55 и так далее, где каждое следующее число, начиная с 2, равно сумме двух предыдущих. Эта «последовательность Фибоначчи» более всего прославила Леонардо — не применительно к размножению кроликов, где следствия из нее нулевые, а за то, что она представляет собой замечательный пример математической закономерности и играет ключевую роль в теории иррациональных чисел. Леонардо и представить себе не мог, что этот маленький jeu d'esprit [16] затмит в глазах потомков все остальное, что он сделал в своей жизни.

Леонардо написал еще несколько книг, и его Practica Qeometriae , появившаяся в 1220 году, содержала значительную часть «Начал» Эвклида, а также кое-что из греческой тригонометрии.

В Книге X «Начал» Эвклида обсуждаются иррациональные числа, построенные как вложенные друг в друга квадратные корни, типа

. Леонардо доказал, что эти иррациональные числа не подходят для решения кубических уравнений. Отсюда не следует, что корни кубического уравнения нельзя построить при помощи циркуля и линейки, поскольку другие комбинации квадратных корней могут в принципе приводить к решению. Но это был намек на то, что, если пользоваться лишь предлагаемыми Эвклидом инструментами, кубическое уравнение может оказаться неразрешимым.


Дата добавления: 2019-02-12; просмотров: 107; Мы поможем в написании вашей работы!

Поделиться с друзьями:






Мы поможем в написании ваших работ!