ИЗУЧЕНИЕ ГОРНЫХ ПОРОД КЛК МНОГОКОМПОНЕНТНЫХ СИСТЕМ



Введение в геологию

 

Предмет и задачи геологии, основные этапы развития, связь с другими геологическими науками. Основные направления инженерной геологии и ее современная структура.

 

 

Возникновение геологии и развитие ее на первых этапах были связаны со строительством. Исследование горных пород в строительных целях начали проводиться задолго до появления термина «геология». Поэтому можно говорить о предыстории геологии, которая, по существу, складывается из двух этапов.

Первый этап - когда строители и горные инженеры самостоятельно изучали горные породы, являющиеся основанием, средой и материалом для различных сооружений. Вряд ли можно, хотя бы приблизительно, указать, когда начали изучаться горные породы в связи
со строительством. Началом же научных исследований и обобщения
накопленного материала инженерно-геологического характера т.е. началом первого этапа предыстории инженерной геологии, можно счи­тать первые десятилетия XIX в. Оно было, связано с раз­витием промышленного капитализма в Европе, Америке и России.
Строительство заводов, фабрик, плотин и других сооружений требовало
наиболее рациональных решений: достаточной их надежности при
наименьших затратах. Достигнуть этого без изучения горных пород
было нельзя, поэтому строители начали уделять им гораздо больше
внимания, чем ранее. При этом в их работах горные породы называ­лись грунтами.

С целью обобщения накопившегося опыта строительства и исполь­зования его в сходных условиях строителям самим пришлось разраба­тывать классификации грунтов, описывать их особенности, характери­зовать свойства грунтов, учитывать воздействие геологических процес­сов на различные сооружения.

Второй этап предыстории инженерной геологии связан с привлече­нием геологов к изысканиям под строительство (с начала XIX по 20-е годы XX в.). В это время геологи начали привлекаться к решению вопросов в связи со строительством железных дорог, каналов и других крупных сооружений. Среди геологов, консультировавших строителей,
было немало известных ученых. В качестве примера можно назвать:
В. Смита (Англия), Ч. Беркли (США), И. В. Мушкетова, В. А. Обру­чева, А. П. Павлова и др. При изысканиях под железные дороги большое внимание уделялось геологическому строению полосы трассы и геологическим процессам в ее пределах.

Возникновение грунтоведения и механики грунтов.

В 20-е годы ХХ в. возникло новое направление в изучении почв и горных пород — грунтоведение. Предпосылками для его возникновения явились: генетический подход, разработанный В. В. Докучаевым в почвоведении, и работы П. А. Земятченского по изучению глин, сформулировавшего в 1923 г. положение о том, что глину надо изучать как физическое тело, сложив­шееся в определенных естественноисторических условиях.

Началом оформления грунтоведения следует считать создание
в Петрограде в 1923 г. Дорожно-исследовательского бюро, которое под
руководством Н. И. Прохорова, П. А. Земятченского и Н. Н. Иванова
организовало исследование почв и осадочных (преимущественно молодых) пород для дорожного строительства. Возникло дорожное грунтоведение которое позднее, когда генетический подход нашел себе место при изучении горных пород для других видов инженерных сооружений, утратило прилагательное «дорожное» и стало называться более широко - «грунтоведение». В 1930 г. была открыта кафедра грунтоведения в Ленинградском университете, а в 1938 г., такая же кафедра – в Московском университете

Под грунтоведением стала пониматься наука, изучающая любые горные породы, почвы и искусственные грунты, как объект инженерно-строительной деятельности человека, свойства которых определяются их генезисом и постгенетическими процессами и которые представляют собой многокомпонентные системы, изменяющиеся во времени.

Грунтоведение с самого начала развивалось как естественноисторическая наука. Большое значение для его развития имели работы П. А. Земятченского, М. М. Фила­това, В. В. Охотина, В. А. Приклонского, Б. М. Гуменского, И. В. Попова, С. С. Морозова л др. В 1925 г. вышла монография К. Терцаги «Строительная механи­ка грунтов», положившая начало новой науке — «механике грунтов», возникшей на стыке физико-матема­тических, строительных и геологи­ческих наук. Механика грунтов рассматривает те общие закономернос­ти, которые вытекают из применения к горным породам законов теоретической и строительной механики. При этом механические свойства грунтов, подчиняющиеся законам ме­ханики и укладывающиеся в опре­деленные расчетные схемы, ставятся на первое место, а геологические особенности грунтов, сформировавшиеся в результате их генезиса, учитываются меньше. В западных странах изучение горных пород для строительных целей стало осуще­ствляться преимущественно в рамках механики грунтов; у нас получили развитие как грунтоведение, так и механика грунтов.

Возникновение и развитие инженерной геологии. При решении вопросов, связанных со строительством, мало знать особенности горных пород, изучаемые грунтоведением и механикой грунтов. До начала строительства, на стадии выбора наилучшего варианта участка и объ­ективной оценки конкурирующих вариантов, необходим широкий круг сведений о геологическом строении территории, геологических процес­сах, которые уже протекают или могут возникать в результате строи­тельства, о гидрогеологических условиях и т. д. Изучение этих вопросов взяла на себя новая наука — инженерная геология.

Впервые, под названием «Ин­женерная геология» в 1929 г. вышла книга Редлиха, Кампе и Терцаги на немецком языке, но в ней обоснование названия и изложение методологических основ инженерной геологии отсутствовали.

Инженерная геология как наука оформилась при гидротехническом строительстве в результате реализации плана электрификации. Большое значение для возникновения и развития инженерной геологии имели работы Ф. П. Саваренского, Г. Н. Каменского, Н. Ф. Погребова, И. В. Попова, Н. Н. Маслова, М. П. Семенова. R А. Приклонского и др., принимавших участие в изысканиях под строительство гидроэлектростанций на Волге, Днеп­ре, по трассе канала Волга—Москва и др. Большой вклад в станов­ление инженерной геологии как науки внесли крупнейшие советские геологи: Е. Б. Милановский, Г. Ф. Мирчинк, И. С. Шацкий и др.

B 1929 г. была открыта кафедра инженерной геологии в Ленинград­ском горном институте, а в 1931 г. - в Московском геологоразведочном институте. В 1937 г. вышли в свет книги: «Инженерная геология» Ф. П. Саваренского и «Методика инженерно-геологических исследова­ний для гидротехнического строительства», написанная М. П. Семеновым, Н. И. Биндеманом и М. М. Гришиным, которые окончательно закрепили представление об инженерной геологии как новой отрасли геологической науки.                                                                                                 

В те же годы за рубежом возникла «геотехника», которая получи­ла широкое развитие в Швеции, Норвегии, Германии, Англии США и ряде других стран. На первое место в «геотехнике» выдвигались меха­нико-математические методы анализа геологических и инженерно-гео­логических явлений, влияющих на устойчивость сооружения, а геологическимисследованиям отводилась   второстепенная роль.

В 1951 г. вышел учебник «Инженерная геология» И. В. Попова. В нем автор пишет: «Инженерная геология как наука является от­раслью геологии, изучающей динамику верхних горизонтов земной коры в связи с инженерной деятельностью человека».

Инженерная геология, подобно всей современной науке, развивалась под влиянием процессов дифференциации и синтеза. В результате дифференциации сформировались три основных раздела инженерной геологии (три инженерно-геологические дисциплины): грунтоведение,
инженерная геодинамика и региональная инженерная геология. Процесс синтеза в инженерной геологии выражается во взаимопроникновении инженерно-геологических дисциплин и во взаимосвязи инженерной геологии со смежными науками, в первую очередь с гидрогеологией и мерзлотоведением, а также минералогией, астрографией, литологией, почвоведением, геохимией и др.

Благодаря этому оказалось возможным создать в 1968 г. на ХХII Международном геологическом конгрессе Международную ассоциацию инженеров-геологов (МАИГ).

Однако нельзя сказать, что развитие инженерной геологии завер­шилось. В настоящее время значительно расширяется круг задач, сто­ящих перед инженерной геологией. В связи с этим изменяется и поня­тие самого термина «инженерная геология».

В 1944 г. В. И. Вернадский ввел понятие о «ноосфере» — сфере разума, «где человек становится крупнейшей геологической силой». Справедливость его слов становится все более очевидной по мере развития научно-технического прогресса.

Следующие примеры подтверждают это положение. На 1970 год площадь Земли, занятая под жилые застройки и другие инженерные сооружения, составляла 4% суши, а к 2000 г. эта площадь занимает, около 15% суши.

Особая роль принадлежит городам.

Город — это территория, где воздействие чело­века на поверхностную часть литосферы наиболее интенсивно и разно­образно; это воздействие может достигать глубины 100 и более метров. Деятельность людей, связанная с горными и строительными рабо­тами, по своим масштабам соизмерима с денудационной работой рек. Производственная деятельность людей приводит к ежегодному пере­мещению 10 000 км3 (Рябчиков, 1973) вещества. На поверхности Земли оказываются тысячи кубокилометров отвалов пород, ничего общего не имеющих с современным четвертичным покровом.

Общая протяженность железнодорожной сети мира составляет около 1 400 тыс. км. Породы, положенные в насыпи железных и шос­сейных дорог, сопоставимы с современными отложениями рек.

Протяженность берегов искусственных водохранилищ составляет десятки тысяч километров.

На всем этом протяже­нии идет интенсивная переработка берегов, образуются оползни, происходят процессы засоления и заболачивания.

Длина оросительных магистральных каналов превышает 300 тыс. км, что составляет 3/4 расстояния между Землей и Луной. Мелиоративное и ирригационное строительство захватывает мас­сивы в десятки и даже сотни квадратных километров. Площадь оро­шаемых земель к концу ХХ века во всем мире дос­тигает 200 млн. га. Не меньшая площадь подвергается осушению.

На этих площадях человек коренным образом меняет водный режим и состояние почв и горных пород, слагающих поверхностную часть Земли. Количество примеров, показывающих масштабы воздействия чело­века на поверхностную часть литосферы, можно было бы умножить. Вся инженерно-хозяйственная деятельность людей тесно связана между собой и в такой же тесной связи оказываются различные виды воздействия человека на земную кору. Однако в настоящее время наибольшее значение в этом отношении имеет строительная и горно­добывающая деятельность людей, под влиянием которой в первую очередь «меняется лик Земли, исчезает девственная природа» (Вер­надский, 1944).

Интенсивное воздействие человека на поверхностную часть земной
коры требует изучения инженерно-геологических условий крупных территорий и прогноза их изменения под влиянием деятельности человека на длительное время. При этом под инженерно-геологическими условиями понимаются существующие в данное время особенности геологи­ческого строения территории, состава и свойств горных пород, геологи­ческих процессов, рельефа и подземных вод. Без знания этих условий невозможно рациональное решение проблем, связанных с инженерным воздействием человека на поверхностную часть земной коры.

Таким образом, в настоящее время инженерная геология не только обеспечивает необходимыми данными проектировщиков и строителей при возведении самых разнообразных сооружений (что само по себе имеет большое практическое значение), но решает сложные научные проблемы, возникающие при изучении поверхностной части земной коры как объекта воздействия человека на литосферу. Инженерная геология из науки, имеющей главным образом прикладное значение, все в большей и в большей степени становится наукой о ноосфере. Сейчас инженерную геологию можно определить как науку о геологической среде, ее рациональном использовании и охране в связи с инженерно-хозяйственной деятельностью человека.

Под геологической средой следует понимать горные породы и почвы, слагающие верхнюю часть литосферы, которые рассматриваются как многокомпонентные системы, находящиеся под воздействием инженерно-хозяйственной деятельности человека, что приводит к изменению природных геологических процессов и возникновению новых антропогенных (инженерно-геологических) процессов, изменяющих инженерно-геологические условия определенной территории.

При таком определении геологической среды каждый из современных разделов инженерной геологии приобретает определенный аспект при решении стоящих перед ним задач, к которым относятся: грунтоведение, инженерная геодинамика, региональная инженерная геология, инженерная геология месторождений полезных ископаемых, инженерная геология массивов горных пород, инженерно-геологические исследования и изыскания. 

 

Грунтоведение

Грунтоведение можно определить как науку, изучающую любые
горные породы и почвы как многокомпонентные динамичные системы,
изменяющиеся в связи с инженерно-хозяйственной деятельностью че­ловека. Горные породы изучаются петрографией и литологией, но только грунтоведение подходит к ним как к многокомпонентным динамичным системам.

Основным положением совершенного грунтоведения является положе­ние о зависимости свойств грунтов от их состава, структуры и тексту­ры. Состав, структура, текстура, а отсюда и свойства горных пород формируются в процессе их генезиса и изменяются под влиянием постгенетических процессов; диагенеза, эпигенеза и гипергенеза. Поэтому при оценке пород в инженерно-геологическом отношении состав, струк­тура и текстура грунтов и их свойства изучаются в зависимости от ге­незиса и постгенетических процессов.

Генетический подход при изучении грунтов является методологи­ческой основой грунтоведения, благодаря чему оно относится к наукам геологического цикла. Причем под генетическим подходом следует иметь в виду анализ геологической истории развития территории, сло­женной изучаемыми горными породами, для того, чтобы можно было понять, что испытала порода за период с момента своего формирования до наших дней, какова была ее «геологическая жизнь».

В основе генетического изучения горных пород в инженерно-геологических целях лежит подразделение их на три основные общеизвестные группы:магматические, осадочные и метаморфические, которые одновременно отражают их генезис и важнейшие петрографические
особенности. Дальнейшее более дробное подразделение горных пород на генетические и петрографические типы дает еще большую информацию об их особенностях, важных при решении различных инженерно-геологических вопросов.

Горные породы, сформировавшиеся иногда в одних и тех же усло­виях и имеющие один и тот же геологический возраст и состав, могут существенно отличаться по своему современному состоянию и свойст­вам. Это объясняется тем, что такие породы претерпели различные постгенетические преобразования. Влияние постгенетических измене­ний на формирование свойств пород хорошо прослеживается на при­мере кембрийских гидрослюдистых глин, широко развитых на севере и северо-западе Русской платформы. В районе Санкт-Петербурга эти глины залегают вблизи поверхности. В течение геологической истории они дважды испытывали сравнительно небольшую и кратковременную наг­рузку; первую в палеозое — меньшую по величине (6—7 МПа), но продолжительную во времени, а вторую в ледниковый период — боль­шую по величине (8—9 МПа), но менее продолжительную. В тече­ние же значительного геологического времени кембрийские глины были разгружены, происходили их разуплотнение и гидратация. В резуль­тате этого кембрийские глины в районе Санкт-Петербурга «отстали» в своем развитии от аналогичных отложений, например, в районе Вологды, где они залегают на значительной глубине и от палеозоя до настоящих дней непрерывно испытывали прогрессивно нарастающее гравитационное уплотнение. Поэтому если в районе Вологды глинистые отложе­ния кембрия представлены аргиллитами со следами сланцеватости, с естественной влажностью 5% и пористостью 15%, то в районе Ленин­града это тугопластичные и полутвердые глины с влажностью 14% и пористостью 30% (Ломтадзе, 1973).

Приведенный пример хорошо показывает, что горные породы под влиянием постгенетических процессов могут сильно изменяться. Поэто­му когда говорят о генетическом подходе в грунтоведении, то имеют в виду, что состав, строение и свойства грунтов зависят от их генезиса и постгенетических процессов. Эта зависимость проявляется в изменении особенностей состава, структуры я текстуры породы, что в конечном итоге обусловливает различие свойств пород. Это три равноценных фактора с точки зрения важности влияния их на свойства грунтов. Однако каждый из них может иметь домини­рующее значение в зависимости от генетического и петрографического типа породы, а также от того, какое свойство является предметом изучения.

 

ИЗУЧЕНИЕ ГОРНЫХ ПОРОД КЛК МНОГОКОМПОНЕНТНЫХ СИСТЕМ

В понятие термина «грунт» подчеркивается, что это любые горные породы и почвы, которые изучаются как многокомпонентные системы. Составляющими компонентами горных пород являются: твердая компонента - минеральная и органическая часть горных пород, жидкая компонента - содержащиеся в пустотах пород природные воды, газообразная компонента - газы в пустотах пород и живая компонента - главным образом микроорганизмы, обитающие в горных породах. Соотношение компонент в горных породах определяет их состояние и свойства. Так, сухая глина обладает большой прочностью, а та же глина в водонасыщенном состоянии может течь под действием силы тяжести.

Представление о том, что горные породы изменяются во времени является общеизвестным, но оно будет неполным, если не подчеркнуть, что быстрые изменения горных пород происходят лишь в том слу­чае, когда соотношение между компонентами, составляющими горную породу, меняется достаточно быстро.

Это положение наиболее характерно для дисперсных грунтов, у которых особенно подвижны два компонента: вода и воздух, содержащиеся в их порах. В зависимости от того, полностью или частично будут заполнены поры водой (или газом) и содержатся в них живые
организмы или нет, грунты могут являться двух-, трех- и четырехкомпонентными системами.

 


Дата добавления: 2018-09-22; просмотров: 412; Мы поможем в написании вашей работы!

Поделиться с друзьями:






Мы поможем в написании ваших работ!