Схема электрохимической размерной обработки, реализованная в станках SFE



 

1. Обрабатываемая деталь является анодом (+) и в процессе обработки перемещается с рабочей подачей (S).

2. Электрод-инструмент является катодом (-), в процессе обработки колеблется с частотой (F) и амплитудой (А).

3. Источник импульсного технологического тока — импульсы тока синхронизированы с колебаниями электрода- инструмента.

4. Электролит — водный раствор солей (NaCl, NaNO3 и др.).

5. Система слежения (СС) за обрабатываемой поверхностью управляет рабочей подачей (S) и обеспечивает минимально необходимый межэлектродный зазор.

 

Электроабразивнаяобработка.Особенностьэлектроабразивной обработки состоит в том, что катодом является абразивный инструмент 2 (рис. 11.6, а), выполненный на электропроводящей связке (например, бакелитовая с графитным наполнителем). Между анодом (заготовкой 1) и инструментом имеется межэлектродный зазор за счет абразивных зерен 3, выступающих из связки. В этот зазор подается электролит 4. До 90 % припуска 5 удаляется за счет анодного растворения, 10–20 % припуска удаляется механической обработкой. При использовании алмазного абразивного инструмента (электроалмазная обработка) анодным растворением удаляется до 75 % припуска. Способ применяется для отделочной обработки нежестких заготовок и заготовок из труднообрабатываемых материалов.

 

 

 

 


Рис. 11.6. Электроабразивная обработка: а – шлифование; б – хонингование; 1 – заготовка; 2 – инструмент; 3 – абразивные зерна; 4 – электролит; 5 – припуск; 6 – хонинговальная головка; 7 – ванна; 8 – токосъемное кольцо; 9 – стол; 10 – изолятор

При электро-хонинговании (рис. 11.6, б) заготовку 1, установленную на токосъемное кольцо 8 и изолятор 10, помещают в ванну 7 с электролитом 4.

Ванну устанавливают на стол 9 хонинговального станка. Кинематика процесса аналогична кинематике обычного хонингования. Однако хонинговальная головка 6 оснащена не абразивными брусками, а брусками из липы, ольхи или пластмассы. Предварительное хонингование ведут в растворе электролита NaNO3 (натриевая селитра) с добавлением абразивного порошка зернистостью не более М28. Окончательное хонингование ведут в том же электролите, но с добавлением оксида хрома. Способ обеспечивает более низкую шероховатость поверхности (Ra 0,04–0,16 мкм − зеркальный блеск) и повышение производительности обработки в 4–5 раз.

 

7. Восстановление деталей сваркой и наплавкой. Ручная сварка и наплавка плавящимися электродами. Способы подготовки деталей перед сваркой. Газовая сварка и наплавка. Дуговая наплавка под флюсом.

На сварку и наплавку приходится от 40 до 80% всех восстановленных деталей. Такое широкое распространение этих способов обусловлено: простотой технологического процесса и применяемого оборудования; возможностью восстановления деталей из любых металлов и сплавов; высокой производительностью и низкой себестоимостью; получением на рабочих поверхностях деталей наращиваемых слоев практически любой толщины и химического состава (антифрикционные, кислотно-стойкие, жаропрочные и т.д.).

Нагрев до температуры плавления материалов, участвующих при сварке и наплавке, приводит к возникновению вредных процессов, которые оказывают негативное влияние на качество восстанавливаемых деталей. К ним относятся металлургические процессы, структурные изменения, образование внутренних напряжений и деформаций в основном металле деталей.

В процессе сварки и наплавки происходит окисление металла, выгорание легирующих элементов, насыщение наплавленного металла азотом и водородом, разбрызгивание металла.

Соединение наплавленного металла с кислородом воздуха является причиной его окисления и выгорания легирующих элементов (углерода, марганца, кремния и др.). Кроме этого, из воздуха в наплавленный металл проникает азот, который является источником снижения его пластичности и повышения предела прочности. Для защиты от этих отрицательных явлений при сварке и наплавке используют электродные обмазки, флюсы, которые при плавлении образуют шлак, предохраняющий возможный контакт металла с окружающей средой. С этой же целью применяют и защитные газы.

Влага, которая всегда содержится в гигроскопичных электродных обмазках и флюсах, является источником насыщения металла водородом, который способствует повышению пористости наплавленного металла и возникновению в нем значительных внутренних напряжений. Исключить воздействие влаги можно тщательной сушкой электродных обмазок и флюсов.

При сварке и наплавке выделяются углекислый и угарный газы, которые бурно расширяются и являются источником разбрызгивания жидкого металла. Эти потери металла можно уменьшить, если использовать электроды с пониженным содержанием углерода, тщательно очищать детали от окислов или вводить в состав электродных обмазок и флюсов вещества, содержащие раскисляющие элементы (марганец, кремний).

Неравномерный нагрев детали в околошовной зоне (зоне термического влияния) приводит к структурным изменениям в основном металле детали. Механические свойства металла в этой зоне снижаются. Размеры зоны термического влияния зависят от химического состава свариваемого металла, способа сварки и ее режима. Размеры зоны термического влияния для газовой сварки составляют 25... 30 мм, а при электродуговой сварке — 3...5 мм. Увеличение сварочного тока и мощности сварочной горелки приводит к расширению зоны термического влияния, а скорости сварки (выбором рационального режима) — к уменьшению.

Из-за неравномерного (местного) нагрева и структурных превращений, происходящих в зоне термического влияния, возникают внутренние напряжения деформации в деталях. Если внутренние Напряжения превышают предел текучести материала детали, то возникают деформации. Они могут быть значительно снижены путем нагрева деталей перед сваркой и медленного охлаждения после сварки, применения специальных приемов сварки и наплавки. В технологический процесс восстановления деталей сваркой и наплавкой входят следующие операции — это подготовка деталей к сварке или наплавке; выполнение сварочных или наплавочных работ; обработка деталей после выполнения сварочных или наплавочных работ. Порядок выполнения сварочных и наплавочных работ зависит от выбранного способа.

Сварка и наплавка

Ручная сварка и наплавка плавящимися электродами (рис. 13.1). Параметры режима — это сила тока, напряжение и скорость наплавки. Для получения минимальной глубины проплавления основного металла электрод наклоняют в сторону, обратную направлению наплавки.

Общие потери при наплавке покрытыми электродами с учетом потерь на угар, разбрызгивание и огарки составляют до 30%.

Напряжение дуги составляет 22...40 В. Диаметр электрода равен (табл. 13.1) dM — 0,56 + (1...2) мм. Длина дуги не должна превышать диаметра электрода.

 

Ручная сварка и наплавка используются для устранения трещин, вмятин, пробоин, изломов и т. д. В табл. 13.2 приведены способы подготовки поврежденного участка изделия.

Для уменьшения вредного последствия рассмотренных в разд. 13.1 явлений сварку и наплавку ведут электродами с обмазкой — тонкой или толстой.

Малоответственные детали сваривают электродами с тонкой обмазкой, которые изготовляют из проволоки Св-08. Проволоку рубят на куски длиной 300...500 мм и покрывают обмазкой, состоящей из 3/4 мела и 1/4 жидкого стекла, разведенного в воде д0 сметанообразного состояния.

Определяющим при выборе толстых электродов является процесс — сварка или наплавка. Для сварки используют электроды обозначаемые буквой «Э» с двузначной цифрой через дефис, например Э-42. Цифра показывает прочность сварочного шва на разрыв.

Наплавочные электроды обозначают двумя буквами «ЭН» ц цифрами, которые показывают гарантированную твердость наплавленного данным электродом слоя.

Каждому типу электрода соответствует несколько марок составов обмазок. По входящим в них веществам все электродные покрытия разделяют на следующие группы: рудно-кислое — Р, рути-ловое — Т, фтористо-кальциевое — Ф, органическое — О и др. Наиболее распространены рудно-кислое (ОММ-5, ЦМ-7, ЦМ-8 и др.), рутиловое (АНО-1, АНО-3, АНО-4, АНО-12, ОЗС-3, ОЗС-4, ОЗС-6 и др.) и фтористо-кальциевое покрытия (УОНИ-13/45, УОНИ-13/55, ЦЛ-9, ОЗС-2, АНО-7 и др).

 

Таблица 13.2

Способы подготовки деталей перед сваркой

 

 

Газовая сварка и наплавка. Сущность процесса — это расплавление свариваемого и присадочного металла пламенем, которое образуется при сгорании горючего газа в смеси с кислородом. В качестве горючего газа используют ацетилен, что позволяет обеспечить температуру пламени 3100... 3300 °С. Ацетилен получают с помощью ацетиленовых генераторов, а кислород сохраняют и транспортируют в стальных баллонах вместимостью 40 л под давлением 15 МПа.

Сварку и наплавку осуществляют сварочными горелками. Мощность пламени характеризуется массовым расходом ацетилена, зависящим от номера наконечника горелки (табл. 13.3). Расход ацетилена можно определить по формуле

А = SR',

где S — толщина детали, мм;

R' — коэффициент, характеризующий удельный расход ацетилена на 1 мм толщины детали, м3/(ч-мм) (для чугуна R' — О,И...0,14; для стали — 0,10...0,12; для латуни — 0,12...0,13; для алюминия — 0,06...0,10).

 

Расход кислорода на 10...20% больше, чем ацетилена.

При ручной сварке пламя направляют на свариваемые кромки так, чтобы они находились в восстановительной зоне на расстоянии 2... 6 мм от конца ядра. Конец присадочной проволоки также держат в восстановительной зоне или в сварочной ванне.

Угол наклона ее мундштука горелки к поверхности свариваемого металла зависит:

от толщины соединяемых кромок изделия.

от теплопроводности металла (чем толще металл и чем больше его теплопроводность, тем угол наклона мундштука горелки должен быть больше, что способствует более концентрированному нагреву металла вследствие подведения большего количества теплоты).

Существуют два основных способа газовой сварки.

Правый (рис. 13.2, а). Процесс сварки ведется слева направо, горелка перемещается впереди присадочного прутка, а пламя направлено на формирующийся шов. В результате происходит хорошая защита сварочной ванны от воздействия атмосферного воздуха и замедленное охлаждение сварного шва. Такой способ позволяет получить швы высокого качества. Применяют при сварке металла толщиной более 5 мм. Пламя горелки ограничено с двух сторон кромками изделия, а позади — наплавленным валиком, что значительно уменьшает рассеивание теплоты и повышает степень ее Использования. Этим способом легче сваривать потолочные швы, так как в этом случае газовый поток пламени направлен непосред-ственно на шов и тем самым препятствует вытеканию металла из сварочной ванны.

Левый (рис. 13.2, б). Процесс сварки выполняют справа налево, горелка перемещается за присадочным прутком, а пламя направляется на несваренные кромки и подогревает их, подготавливая к сварке. Пламя свободно растекается по поверхности металла что снижает опасность его пережога. Способ позволяет получить внешний вид шва лучше, так как сварщик отчетливо видит шов ц может получить его равномерным по высоте и ширине, что особенно важно при сварке тонких листов. Этим способом осуществляют сварку: вертикальных швов снизу вверх; на вертикальных поверхностях горизонтальными швами выполняют сварку, направляя пламя горелки на заваренный шов.

Для получения сварного шва с высокими механическими свойствами необходимо качественно произвести подготовку свариваемых кромок, которая состоит в очистке их от масла, окалины и других загрязнений на ширину 20...30 мм с каждой стороны шва; разделку под сварку, которая зависит от типа сварного соединения; прихватки короткими швами, длина, количество и расстояние между ними зависит от толщины металла, длины и конфигурации шва.

При толщине металла до 6... 8 мм применяют однослойные швы, до 10 мм — двухслойные, более 10 мм — трехслойные и более. Перед наложением очередного слоя поверхность предыдущего слоя необходимо хорошо очистить металлической щеткой. Сварку выполняют короткими участками, стыки валиков в слоях не должны совпадать. При однослойной сварке зона нагрева больше, чем при многослойной. При наплавке очередного слоя проводят отжиг нижележащих слоев.

Диаметр присадочной проволоки при сварке левым способом металла толщиной до 15 мм равен d ~ S/2 + 1, где S — толщина свариваемой стали (мм), при правом способе — половине толщины свариваемого металла. При сварке металла толщиной более 15 мм применяют проволоку диаметром 6...8 мм.

После сварки, чтобы металл приобрел достаточную пластичность и мелкозернистую структуру, необходимо провести проковку металла шва в горячем состоянии и последующую нормализацию при температуре 800...900"С.

 

 

Дуговая наплавка под флюсом. Способ широко применяется для восстановления цилиндрических и плоских поверхностей деталей. Это механизированный способ наплавки, при котором совмещены два основных движения электрода — это его подача по мере оплавления к детали и перемещение вдоль сварочного шва.

Сущность способа наплавки под флюсом (рис. 13.3) заключается в том, что в зону горения дуги автоматически подаются сыпучий флюс и электродная проволока. Под действием высокой температуры образуется газовый пузырь, в котором существует дуга, расплавляющая металл. Часть флюса плавится, образуя вокруг дуги эластичную оболочку из жидкого флюса, которая защищает расплавленный металл от окисления, уменьшает разбрызгивание и угар. При кристаллизации расплавленного металла образуется сварочный шов.

Преимущества способа:

возможность получения покрытия заданного состава, т. е. легирования металла через проволоку и флюс и равномерного по химическому составу и свойствам;

защита сварочной дуги и ванны жидкого металла от вредного влияния кислорода и азота воздуха;

выделение растворенных газов и шлаковых включений из сварочной ванны в результате медленной кристаллизации жидкого металла под флюсом;

возможность использования повышенных сварочных токов, которые позволяют увеличить скорость сварки, что способствует повышению производительности труда в 6...8 раз;

экономичность в отношении расхода электроэнергии и электродного металла;

отсутствие разбрызгивания металла благодаря статическому давлению флюса; возможность получения слоя наплавленного металла большой толщины (1,5 ...5 мм и более);

независимость качества наплавленного металла от квалификации исполнителя;

лучшие условия труда сварщиков ввиду отсутствия ультрафиолетового излучения; возможность автоматизации технологического процесса

 

Недостатки способа:

значительныи нагрев детали;

невозможность наплавки в верхнем положении шва и деталей диаметром менее 40 мм

При наплавке могут возникнуть дефекты: неравномерность ширины и высоты наплавленного валика из-за износа мундштука или подающих роликов, чрезмерного вылета электрода; наплыв металла вследствие чрезмерной силы сварочного тока или недостаточного смещения электродов от зенита; поры в наплавленном металле из-за повышенной влажности флюса (его необходимо просушить в течение 1... 1,5 ч при температуре 250...300°С).

В ремонтном производстве наплавку под флюсом применяют для восстановления шеек коленчатых валов, шлицевых поверхностей на различных валах и других деталей автомобиля.


Дата добавления: 2018-06-01; просмотров: 190; Мы поможем в написании вашей работы!






Мы поможем в написании ваших работ!