Расчет электропроводности полупроводниковых кристаллов на основе рассмотренных моделей.



 

Электропроводность полупроводникового кристалла определяется электропроводностью электронов и дырок, поэтому для нее, используя (1.42) можно записать:

σ = σnp = qμnn + qμpp = q(μnn + μpp)            (1.46)

Как видно из (1.46) электропроводность полупроводника зависит от концентрации носителей заряда и подвижности, значения которых зависят как от технологии так и температуры.

 

Собственный полупроводник.

Для чистого бездефектного кристалла с проводимостью близкой к собственной справедливо n = p = ni см. (1.19), тогда для электропроводности собственного полупроводника можно записать:

 

 (1.50)

Поскольку σ0(T) слабо зависит от температуры в оценочных расчетах принимают предэкспонциальный множитель постоянным равным значению электропроводности при T→∞. Формула (1.50) хорошо описывает экспериментальную кривую электропроводности для чистых кристаллов с совершенной структурой (см. рис. 1.1. ) и из экспериментальной зависимости используя соотношение (1.50) можно определить такие характеристические параметры материала как Eg и σ0.

 Легированный полупроводник.

Для легированного кристалла можно выделить несколько температурных областей как для изменения с температурой концентрации (см. п.п. 1.2.4 рис. 1.16 ), так и для изменения с температурой подвижности носителей заряда (см п.п. 1.2.5 рис. 1.21). При этом в области, где доминирует примесная приводимость ni(T)<<Nd  или ni(T) <<Na  помимо рассеяния на решетке на величину электропроводности может оказывать влияние и рассеяние на примесях. Напомним, что эффективная подвижность определяется рассеянием на колебаниях решетки и рассеянием на ионизованной примеси см. (1.48).

Особенно заметным влияние изменения подвижности становится в области истощения примеси, для которой концентрация основных носителей с хорошей точностью можно считать постоянной nn≈Nd pp≈Na, поскольку выполняется условие ni<<Nd, ni<<Na и температурной зависимостью ni(T) можно пренебречь).


Таким образом, введение легирующей примеси приводит не только к изменению электропроводности кристаллов, в результате появления дополнительных носителей заряда, но и к изменению характера зависимости электропроводности от температуры. Введение в небольших концентрациях примеси (обычно не более сотых долей процента) не оказывает значительного влияния на решеточное рассеяние, однако концентрация ионизованной примеси может изменяться в миллионы раз, естественно предположить, что при этом возрастет и степень рассеяния на ионах примеси при низких температурах.

Для электропроводность легированных кристаллов можно записать:

  (1.51)

Анализ соотношений (1.50) показывает, что изменение концентрации от температуры зависит экспоненциально от изменения положения уровня Ферми. Вообще уровень Ферми следует рассматривать как хороший индикатор процессов, происходящих с носителями заряда. Если уровень Ферми приближается к зоне проводимости значит возрастает концентрация электронов и σn, при этом концентрация дырок и соответственно σp падает.

Показанные на рис. 11 диаграммы помогут понять как с температурой изменяется уровень Ферми (а), концентрация носителей заряда (б), подвижность (в) и электропроводность (г).

В области высоких температур, там, где доминируют межзонные переходы и собственная концентрация носителей больше примесной ni>>nпр полупроводник ведет себя как собственный (область I). В области низких температур (область III), там где примесь не ионизована уровень Ферми должен находиться выше донорного уровня (вероятность заполнения электронами больше 1/2). По мере того, как температура повышается доноры отдают электроны в зону проводимости и постепенно полностью ионизуются (область II). Область II принято называть областью истощения примеси, поскольку все атомы доноров отдали свои электроны, а концентрация собственных электронов все еще очень мала, концентрация электронов в этой области остается постоянной и примерно равной концентрации примесных атомов. Именно эта температурная область и является основной областью работы значительной части полупроводниковых диодов, и поскольку в области II концентрация носителей изменяется незначительно, то в электропроводности (кривая В) становится заметен вклад подвижности, что приводит к некоторому падению электропроводности с ростом температуры (что вообще говоря не характерно для полупроводников) в некотором интервале температур за счет доминирования рассеяния на колебаниях решетки. Затем с повышением температуры имеет место переход к собственной проводимости, концентрация электронов и электропроводность начинают возрастать экспоненциально с температурой.

Подводя итоги, можем сделать вывод, что в соответствии с рассмотренной моделью основными внешними факторами влияющими на электропроводность в рамках рассмотренных моделей являются: ширина запрещенной зоны, концентрация и тип примесей, глубина залегания примесных уровней.

В табл. 1.1 приведены параметры, характеризующие кристаллы основных полупроводников с собственной проводимостью. В этой таблице также приведены такие параметры, как работа выхода (расстояние от уровня Ферми в собственном полупроводнике до нулевого уровня в вакууме) и сродство к электрону - расстояние от уровня Ферми в собственном полупроводнике до нулевого уровня в вакууме).

Табл. 1.1.

Параметры полупроводниковых материалов

Параметр, обозначение, единица измерения Si Ge GaAs
Ширина запрещенной зоны, Eg, эВ при T = 0K 1,17 0,74 1,52
Ширина запрещенной зоны, Eg, эВ при T = 300K 1,11 0,66 1,43
Температурный коэффициент ε = dE/dT*104, эВК -2.8 -3,7 -5,0
Работа выхода электронов, Ф, эВ, при T=300К 4,8 4,4 4,7
Сродство к электрону, χ , эВ, при T=300К 4,05 4,0 4,07
Подвижность электронов μn, см2/(Вс), при T=300К 1350 3800 8600
Подвижность дырок μP, см2/(Вс), при T=300К 480 1820 400
Собственная концентрация носителей заряда ni, см-3 при T=300К 1,61010 2,51013 1,1017
Диэлектрическая проницаемость, ε, при T=300К 11,7 16,3 12
Температура плавления ТК 1420 937 1238
Коэффициент линейного расширения 10-6 , К-1 2,54 5,82 5,82
Удельная теплоемкость Дж/(кг К), при T = 300К 406 310  
Удельная теплопроводность Вт/(мК) 150 60 58
Плотность ρ, г/см3 2,33 5,32 5,4

 

Табл. 1.2

Свойства примесей, используемых для легирования полупроводниковых кристаллов.

 

Примесь*

B

In

Al

P

Sb

E, эВ Тип E, эВ Тип E, эВ Тип E, эВ Тип E, эВ Тип
Si 0,045 A 0,155 A 0,068 A 0,045 Д 0,043 Д
Ge 0,011 A 0,120 A 0,011 A 0,013 Д 0,010 Д

 

Примесь*

Se

Pb

Mg

Zn

Mn

E, эВ Тип E, эВ Тип E, эВ Тип E, эВ Тип E, эВ Тип
GaAs 0,058 Д 0,058 Д 0,029 A 0,031 A 0,113 A

 

Сравнение свойств Si и Ge действительно подтверждает общие свойства, следующее из положения элементарного полупроводника в таблице Д.И. Менделеева: чем выше стоит элемент в столбце таблице элементов, тем больше у него ширина запрещенной зоны.

В таблице 1.2 приведены характеристики некоторых примесей, используемых для легирования этих материалов.

Из данных таблицы 1.2 следует, что для приведенных легирующих примесей энергия активации меньше тепловой энергии при Т=300К, это означает, что при комнатной температуре практически все эти примеси ионизованы.

Рис. 1.22 Диаграммы изменения с температурой положения уровня Ферми (А), концентрации носителей заряда (Б), проводимости (В), подвижности (Г)

 

На рис. 1.22 показано изменение с температурой основных параметров, используемых при расчете проводимости легированного кристалла: положения уровня Ферми (А) , концентрации носителей заряда (Б), проводимости (В) и эффективной подвижности (Г) в зависимости от обратной температуры.

 

Контрольные вопросы.

 

1. Какой из перечисленных материалов при комнатной температуре имеет самую низкую собственную проводимость: Ge, Si, GaAs?

2. У какого из перечисленных материалов самая высокая собственная концентрация носителей заряда Ge, Si, GaAs?

3. Как изменится подвижность электронов, если возрастет их среднее время свободного пробега?

4. Если в кристалл Si с собственной проводимостью ввели примесь Al, то какой тип проводимости приобретет образец при комнатной температуре?

5. В кристалл кремния с собственной проводимостью ввели примесь фосфора, какой тип проводимости будет иметь образец при комнатной температуре?

6. Почему при введении в полупроводниковый кристалл легирующей примеси его электропроводность в области низких температур изменяется значительно сильнее, чем в области высоких ?

7. Почему в кристаллах кремния с собственной проводимостью преобладает электронная составляющая проводимости?

8. Где будет находиться уровень Ферми в кристалле Si, легированном фосфором при температуре близкой к абсолютному нулю?

9. Где будет находиться уровень Ферми в кристалле Si, легированном фосфором при температуре близкой к температуре плавления этого материала?

 

Лекция 5


Дата добавления: 2018-06-01; просмотров: 231; Мы поможем в написании вашей работы!






Мы поможем в написании ваших работ!