Виды статистических графиков и область их применения.



 

По способу построения статистические графики делятся на диаграммы и статистические карты. Диаграммы - наиболее распространенный способ графических изображений. Диаграммы применяются для наглядного сопоставления в различных аспектах (пространственном, временном и др.) независимых друг от друга величин: территорий, населения и т.д. При этом сравнение исследуемых совокупностей производится по какому-либо существенному варьирующему признаку. Статистические карты - графики количественного распределения по поверхности. Они представляют собой условные изображения статистических данных на контурной географической карте, то есть показывают пространственное размещение и пространственную распространенность статистических данных. Геометрические знаки, как было сказано выше - это либо точки, либо линии или плоскости, либо геометрические тела. В соответствии с этим, различают графики точечные, линейные, плоскостные и пространственные. Статистические карты по графическому образу подразделяются на картограммы и картодиаграммы. В зависимости от круга решаемых задач выделяют диаграммы сравнения, структурные диаграммы и диаграммы динамики. Особым видом графиков являются диаграммы распределения величин, представленных вариационным рядом. Это гистограмма, полигон, огива, кумулята.

а) линейные

б) плоскостные

в) объемные

Рис. Виды диаграмм по форме геометрического образа

Диаграммы сравнения применяются для графического отображения статистических данных с целью их наглядного сопоставления друг с другом в тех или иных разрезах. Сравнительные диаграммы делятся на: а) диаграммы простого сопоставления; б) структурные диаграммы в) изобразительные (фигур-знаков) Диаграммы простого сопоставления дают наглядную сравнительную характеристику статистических совокупностей по какому-либо варьирующему признаку. При этом сопоставляемые совокупности и их части классифицируются по какому-либо атрибутивному или количественному признаку так, что отражаемый диаграммой статистический ряд представляет собой дискретный ряд цифр, на основе которого и строится график. Диаграммы простого сопоставления между собой делятся на полосовые и столбиковые. Основной особенностью этих диаграмм является одномерность графического выражения величин варьирующего признака и их одномасштабность для различных столбцов или полос, характеризующих величину отражаемого признака в разных классификационных группах. На столбиковых диаграммах статистические данные изображаются в виде вытянутых по вертикали прямоугольников. Построение столбиковой требует применения вертикальной масштабной шкалы. Основания столбиков размещаются на горизонтальной линии, а высота столбиков устанавливается пропорционально изображаемым величинам. При построении столбиковых диаграмм необходимо выполнять следующие требования: шкала, по которой устанавливается высота столбика должна начинать с нуля; шкала должна быть непрерывной; основания столбиков должны быть равны между собой; наряду с разметкой шкалы соответствующими надписями следует снабжать сами столбцы. Полосовые диаграммы состоят из прямоугольников, расположенных горизонтально. В этом случае масштабная шкала - горизонтальная ось. Принцип их построения тот же, что и в столбиковых.


 Рис. Пример построения столбиковой и полосовой диаграммы сравнения: а) столбиковая; б) полосовая.

На рисунке изображены простейшие диаграммы сравнения. Сравниваются значения групп А, В, С, D, Е. Вспомогательная сетка при построении диаграмм такого рода может быть опущена, она лишь помогает различать отклонения показателей разных групп друг от друга. Полосовые и столбиковые диаграммы являются однородными. Размещение столбиков или полос в поле графика может быть различным: на одинаковом расстоянии друг от друга, вплотную друг к другу и в частичном наложении друг на друга. На рис изображены эти виды диаграмм.

          

Рис. Пример расположения столбцов на диаграмме сравнения: а) на одинаковом расстоянии; б) вплотную; в) с наплывом.

Более сложный вид принимают столбиковые и полосовые диаграммы при изображении на них статистических данных, показывающих какое-либо явление в нескольких разрезах. Такие диаграммы называются полосовыми или столбиковыми диаграммами с комбинированной группировкой показателей. Сходное назначение имеют диаграммы с подразделенными столбиками или полосами. Применение вышеуказанных диаграмм с группировкой по типам зависит от того, что наиболее важно в данных обстоятельствах подчеркнуть. Для сопоставления изменяющихся во времени показателей, а также при сравнении величин, относящихся к одному и тому же периоду, могут использоваться квадратные и круговые диаграммы. В отличие от столбиковых или полосовых диаграмм они выражают величину изображаемого явления размером своей площади. Чтобы изобразить квадратную диаграмму, необходимо из сравниваемых статистических величин извлечь квадратные корни, а затем построить квадраты со сторонами, пропорциональными полученным результатам. Круговые диаграммы строятся аналогично. Разница состоит лишь в том, что на графике вычерчиваются круги, радиусы которых пропорциональны квадратному корню из изображаемых величин.

Рис.. Рост производства товаров народного потребления в г. Москве за 1985-1991 гг. (производство 1985 г. принято за единицу) Показательные диаграммы прямого сопоставления статистических величин могут быть сделаны более выразительными, легче схватываемыми и запоминаемыми, если простые геометрические фигуры заменить символами, воспроизводящими в какой-то степени внешний образ отображаемых графиком статистических совокупностей или символизирующими их. Изобразительные диаграммы делятся на несколько типов. Простейшей изобразительной диаграммой является такая, в которой в качестве графических знаков служат силуэтные изображения -символы сравниваемых статистических совокупностей, пропорциональные по своим размерам объемам этих совокупностей. Возражения против изобразительных диаграмм такого типа: • отсутствие строгой соразмерности сравниваемых фигур; • даже при точном соблюдении размерности величины отдельных знаков-символов отображаемым ими показателям диаграммы все равно оказываются маловыразительными; • использование однородных фигур в расчете на их сравнение по одному условно-выбранному параметру. Следующим типом изобразительных диаграмм являются диаграммы, в которых используются знаки- символы как масштабные знаки, как орудия счета. Диаграммы приятны для обозрения и легко запоминаются. В таких диаграммах часто приходится делить на части последний знак, так как по масштабу один знак является слишком крупной единицей измерения (это обычно делается на глаз).

 

22. Сущность и значение средних величин.

 

Наиболее распространенной формой статистических показателей, используемой в экономических исследованиях, является средняя величина, представляющая собой обобщенную количественную характеристику признака в статистической совокупности в конкретных условиях места и времени. Показатель в форме средней величины выражает типичные черты и дает обобщающую характеристику однотипных явлений по одному из варьирующих признаков. Важнейшее свойство средней величины заключается в том, что она отражает то общее, что присуще всем единицам исследуемой совокупности. Значения признака отдельных единиц совокупности колеблются в ту или иную сторону под влиянием множества факторов, среди которых могут быть как основные, так и случайные. Сущность средней в том и заключается, что в ней взаимопогашаются отклонения значений признака отдельных единиц совокупности, обусловленные действием случайных факторов, и учитываются изменения, вызванные действием факторов основных. Это позволяет средней отражать типичный уровень признака и абстрагироваться от индивидуальных особенностей, присущих отдельным единицам. Типичность средней непосредственным образом связана с однородностью статистической совокупности. Средняя величина только тогда будет отражать типичный уровень признака, когда она рассчитана по качественно однородной совокупности. Так, если мы рассчитаем средний курс по акциям всех предприятий, реализуемых в данный день на данной бирже, то получим фиктивную среднюю. Это будет объясняться тем, что используемая для расчета совокупность является крайне неоднородной. В этом и подобных случаях метод средних используется в сочетании с методом группировок: если совокупность неоднородна - общие средние должны быть заменены или дополнены групповыми средними, т.е. средними, рассчитанными по качественно однородным группам. Категорию средней можно раскрыть через понятие ее определяющего свойства. Согласно этому понятию средняя, являясь обобщающей характеристикой всей совокупности, должна ориентироваться на определенную величину, связанную со всеми единицами этой совокупности. Эту величину можно представить в виде функции:

f(x1,x2,..,xn)

Так как данная величина, в большинстве случаев, отражает реальную экономическую категорию, понятие определяющего свойства средней иногда заменяют понятием определяющего показателя. Если в приведенной выше функции все величины х1 х2,..., хn заменить их средней величиной х, то значение этой функции должно остаться прежним: f(x1,x2,..,xn)= f(x1,x2,..,xn)

 Исходя из данного равенства и определяется средняя. На практике определить среднюю во многих случаях можно через исходное соотношение средней (ИСС) или ее логическую формулу:

ИСС = суммарное значение или объем осредненного признака / число единиц или объем совокупности

 Так, например, для расчета средней заработной платы работников предприятия необходимо общий фонд заработной платы разделить на число работников:

ИСС = фонд заработной платы / число работников

Числитель исходного соотношения средней представляет собой ее определяющий показатель. Для средней заработной платы таким определяющим показателем является фонд заработной платы. Независимо от того, какой первичной информацией мы располагаем - известен ли нам общий фонд заработной платы или заработная плата и численность работников, занятых на отдельных должностях, или какие-либо другие исходные данные - в любом случае среднюю заработную плату можно получить только через данное исходное соотношение средней. Для каждого показателя, используемого в экономическом анализе, можно составить только одно истинное исходное соотношение для расчета средней. Если, например, требуется рассчитать средний размер вклада в банке, то исходное соотношение будет следующим:

ИСС = сумма всех вкладов / число вкладов

Если же необходимо определить среднюю процентную ставку по кредитам, выданным на один и тот же срок, то потребуется следующее исходное соотношение:

ИСС = общая сумма выплат по процентам (из расчета за год) / общая сумма предоставленных кредитов

Однако от того, в каком виде представлены исходные данные для расчета средней, зависит, каким именно образом будет реализовано ее исходное соотношение. В каждом конкретном случае для реализации исходного соотношения потребуется одна из следующих форм средней величины: • средняя арифметическая, • средняя гармоническая, • средняя геометрическая, • средняя квадратическая, кубическая и т.д.

 

 


Дата добавления: 2018-05-12; просмотров: 735; Мы поможем в написании вашей работы!






Мы поможем в написании ваших работ!