Задачи теплового расчёта электрических аппаратов



При тепловом расчёте электрических аппаратов исходят из того условия, что максимальное значение температуры не должно превышать допустимое значение, которое зависит от многих факторов и устанавливается стандартами.

В общем случае, задачей теплового расчёта является определение мощности источников теплоты и расчёт параметров температурного поля.

Для уменьшения мощности источников теплоты в электрических аппаратах придерживаются следующих правил:

- применяют проводниковые материалы с малым удельным сопротивлением;

- при резко выраженном поверхностном эффекте используют трубчатые проводники, чем достигается более равномерное распределение тока по сечению;

- при наличии составных шин их располагают таким образом, чтобы уменьшить поверхностный эффект и эффект близости;

- в конструкции нетоковедущих частей используют неферромагнитные материалы — немагнитный чугун, латунь, бронза;

- в нетоковедущих ферромагнитных деталях предусматривают воздушные промежутки;

- в ферромагнитных деталях на пути магнитного потока применяют короткозамкнутые витки.

Температуру поверхности тела можно уменьшить за счёт увеличения коэффициента теплоотдачи или площади охлаждающей поверхности. Такой способ уменьшения температуры называется интенсификацией охлаждения.

При вынужденной конвекции коэффициент теплоотдачи возрастает на порядок по сравнению с естественной конвекцией. Жидкостное охлаждение при естественной, а тем более при вынужденной конвекции также существенно повышает коэффициент теплоотдачи.

Интенсификация охлаждения путём увеличения площади охлаждающей поверхности достигается увеличением геометрических размеров аппарата или применением радиаторов охлаждения, т.е. искусственным увеличением площади охлаждающей поверхности.

Режимы работы электрических аппаратов

При эксплуатации электрических аппаратов могут иметь место следующие режимы работы:

- продолжительный — при котором температура аппарата достигает установившегося значения и аппарат при этой температуре остаётся под нагрузкой сколь угодно длительное время;

- прерывисто-продолжительный — при котором аппарат остаётся под нагрузкой при установившемся значении температуры ограниченное техническими условиями (ТУ) время;

- повторно-кратковременный — при котором температура частей электрического аппарата за время нагрузки не достигает установившегося значения, а за время паузы не уменьшается до температуры окружающей среды;

- кратковременный — при котором в период нагрузки температура частей электрического аппарата не достигает установившегося значения, а в период отсутствия нагрузки достигает температуры холодного состояния;

- короткого замыкания — это частный случай кратковременного режима работы, когда температура частей электрического аппарата значительно превосходит установившуюся температуру при нормальном режиме работы.

1.1.5. Продолжительный, кратковременный, повторно-кратковременный и

перемежающийся режимы работы электрических аппаратов

Обычно электрические аппараты могут работать в одном из следующих режимов, для которых характерно определённое изменение во времени t тока нагрузки Iн и превышение температуры нагрева(разность между температурой аппарата и температурой окружающей среды): продолжительном, кратковременном, повторно-кратковременном и перемежающемся.

В продолжительном режиме (рис. 1.1.) достигается установившееся превышение температуры нагрева , значение которого в любом случае должно быть меньше, чем допустимое превышение температуры. Скорость изменения температуры характеризуется тепловой постоянной времени . Касательная к кривой отсекает на линии установившейся температуры как раз отрезок, равный по длительности.
В кратковременном режиме (рис. 1.2, а) в период наличия тока Io температура аппарата не успевает достичь установившегося значения, а за время паузы тока tП температура аппарата снижается практически до температуры окружающей среды Токр. Это позволяет осуществлять форсирование аппарата по току с тем условием, что за время нагрузки tНГ не будет достигнуто.

Рис. 1.2. Режимы работы аппаратов

В повторно-кратковременном режиме (рис 1.2, б) температура аппарата так же не достигает установившегося значения в период tНГ, а во время паузы тока не успевает снизиться до Токр. Этот режим характеризуется относительной продолжительностью включения:

где tНГ и tП — время нагрузки и время паузы. Стандартные значения ПВ составляют 15, 25, 40 и 60%.

Коэффициент перегрузки по мощности показывает, во сколько раз можно увеличить мощность источников теплоты в электрическом аппарате при повторно-кратковременном режиме работы по сравнению с мощностью при продолжительном режиме при условии равенства допустимой температуры в том и другом случаях.

Если , то в этом случае, с погрешностью не более 5% можно определить

Поскольку, при прочих равных условиях, мощность источников теплоты в большинстве случаев пропорциональна квадрату тока, то вводится коэффициент перегрузки по току kI, который равен

Наиболее общим является перемежающийся режим (рис. 1.2, в) когда в период t1 проходит ток I1, а в период t2 — ток I1, причём . В установившемся состоянии температура перегрева имеет максимум и минимум . Если по аппарату длительное время проходит ток I1, то установившаяся температура перегрева равна . Аналогично, току I2 соответствует температура перегрева . По прошествии некоторого времени и соседних циклов станут одинаковыми. Наступит так называемый квазистационарный («мнимостационарный») режим работы с неизменными значениями и .

1.1.6. Термическая стойкость электрических аппаратов

Термической стойкостью электрических аппаратов называется способность их выдерживать без повреждений, препятствующих дальнейшей работе, термическое воздействие протекающих по токоведущим частям токов заданной длительности. Количественной характеристикой термической стойкости является ток термической стойкости, протекающий в течение определённого промежутка времени. Наиболее напряжённым является режим короткого замыкания, в процессе которого токи по сравнению с номинальными могут возрастать в десятки раз, а мощности источников теплоты — в сотни раз.

19.РАЗЪЕДИНИТЕЛИ
 Общие сведения

Разъединительпредставляет собой коммутационный аппарат, используемый для включения и отключения электрических цепей в таких условиях, при которых на его контактах не возникает длинной открытой электрической дуги. В отключенном положении разъединителя на его контактах создается видимый разрыв.
Кроме того, разъединители наружной установки рассчитываются на возможность разрыва посредством их ножей зарядных токов воздушных и кабельных линий, а также токов холостого хода силовых трансформаторов и токов небольших нагрузок. Поэтому их контакты часто снабжаются дугогасительными рогами.
Отличительной чертой разъединителей, а также отделителей и короткозамыкателей в сравнении с выключателями является отсутствие дугогасительных устройств.
Основное назначение разъединителя заключается в изоляции отключенных частей электрической цепи с целью безопасного ремонта оборудования.
Разъединители строятся для внутренней и для наружной установки на всю шкалу токов и напряжений. Они могут выполняться как трехполюсными на общей раме (обычно при напряжениях до 35 кВ), так и однополюсными при более высоких напряжениях. Последнее обусловлено тем, что при напряжениях свыше 35 кВ требуемые расстояния между фазами достаточно велики и общая рама получается чрезвычайно громоздкой и тяжелой.
Основным элементом разъединителя являются его контакты. Они должны надежно работать при номинальном режиме, а также при перегрузках и сквозных токах короткого замыкания. В разъединителях применяют высокие контактные нажатия. При больших токах контакты выполняют из нескольких (до восьми) параллельных пластин. Применяют пластины прямоугольного, швеллерного и круглого сечения.
Разъединители могут иметь приводы: ручной - оперативную штангу, рычажной или штурвальный и двигательный - электрический, пневматический.
Во избежание ошибочных действий, т.е. размыкания под током, что может привести к крупным авариям и несчастным случаям, разъединитель всегда блокируется с выключателем. Блокировка допускает оперирование разъединителем только при отключенном выключателе. По исполнению блокировка может быть механической, механической замковой, электромагнитной замковой.
Конструктивное различие между отдельными типами разъединителей состоит прежде всего в характере движения подвижного контакта (ножа). По этому признаку различают разъединители:
вертикально-поворотного (врубного) и горизонтально-поворотного типов с вращением ножа в плоскости, параллельной или перпендикулярной осям поддерживающих изоляторов данного полюса;
с прямолинейным движением вдоль размыкаемого промежутка либо только ножа, либо ножа совместно с изолятором (катящегося типа);
со складывающимся ножом, со сложным движением (поворот и складывание) ножа и др.
Основные требования, предъявляемые к разъединителям:
1. Контактная система должна надежно пропускать номинальный ток сколь угодно длительное время и иметь необходимую динамическую и термическую стойкость.
2.Разъединитель и механизм его привода должны надежно
удерживаться во включенном положении при протекании тока КЗ. В
отключенном положении подвижный контакт должен быть надежно
фиксирован.
3.Промежуток между разомкнутыми контактами должениметь повышенную электрическую прочность.
4. Привод разъединителя целесообразно блокировать с выключателем.


Дата добавления: 2018-05-12; просмотров: 703; Мы поможем в написании вашей работы!

Поделиться с друзьями:






Мы поможем в написании ваших работ!