Лекция 8. Электропроводность и потери в диэлектриках



8.1. Диэлектрическое и резистивное состояние вещества.

 

8.2. Особенности электропроводности для различных агрегатных состояний.

 

8.3. Электропроводность неоднородных диэлектриков.

 

8.4. Диэлектрические потери.

 

8.1. Диэлектрическое и резистивное состояние вещества.

 

Диэлектрические вещества - это такие вещества, в которых возможно накопление, сохранение и распространение электрической энергии.

 

Объемная концентрация энергии (плотность энергии) определяется выражением

 

 

где e0 - диэлектрическая постоянная, e0 = 8.85 10-12 ф/м,

e - диэлектрическая проницаемость материала,

Е - напряженность электрического поля.

 

Резистивные вещества - такие вещества, в которых электрическая энергия расходуется, т.е. преобразуется в другой вид энергии, а именно в тепловую энергию.

 

 Удельные потери энергии при действии постоянного напряжения определяются выражением

 

 

где r - удельное электрическое сопротивление,

t - длительность действия напряжения.

 

Абсолютной разницы между диэлектрическим и резистивным состояниями нет, потому что в зависимости от условий одно и то же вещество может быть и диэлектриком и резистором. Основное условие, разграничивающее поведение вещества на резистивное и диэлектрическое основано на понятии максвелловского времени диэлектрической релаксации:

 

Если на материал действует импульсное напряжение с длительностью импульса t , то при t<< t, вещество можно считать диэлектриком, а в случае обратного неравенства материал можно считать проводящим или резистивным. Для случая переменного напряжения следует сравнивать t и 1/w, где w - частота переменного напряжения, т.е. если t >> 1/w - это диэлектрик, а при t << 1/w - проводник.

Физический смысл максвелловского времени диэлектрической релаксации можно понять взяв плоский конденсатор с веществом, имеющим соответствующие e, r (Рисунок 8.1). Тогда можно, учитывая геометрические параметры конденсатора, найти емкость конденсатора, считая его идеальным диэлектриком и сопротивление постоянному току, считая его проводником .

 

 

 

Собственно говоря рисунок 8.1 и изображает простейшую схему замещения реального конденсатора на идеальные конденсатор и сопротивление. Другое название этой схемы – параллельная схема замещения.

Простейшая схема замещения диэлектрика состоит из параллельного соединения емкости и сопротивления.

Из курса ТОЭ известно, что для схемы, изображенной на рисунке 8.1 постоянная времени разряда емкости С через сопротивление R при отключенном источнике составляет RC. Используя (8.4.) можно получить RC=t=e0×e×r. Отсюда следует, что физический смысл времени релаксации состоит в разряде собственной емкости через собственное сопротивление.

 

 

Рисунок 8.1 – Простейшая схема замещения диэлектрика

 

Рассмотрим некоторые примеры. Хорошо очищенное от примесей трансформаторное масло обладает удельным сопротивлением до r = 1012 Ом·м, диэлектрической проницаемостью e = 2.2, откуда τ = e0×e×r » 20 сек. Сравнивая с 1/w » 3·10-3 сек. для переменного напряжения частотой 50 Гц, можно заключить, чтоτ >> 1/w, т.е. трансформаторное масло для этих условий является хорошим диэлектриком. Однако, как отсюда видно, для применения в устройствах постоянного напряжения трансформаторное масло малопригодно. А для загрязненного масла значение rможет упасть до двух-трех порядков по величине, что приведет к t ≤ 0.1 сек., что сравнимо с 1/w. Ясно, что такое масло непригодно и для устройств переменного напряжения.

В качестве второго примера рассмотрим воду. В обыденной жизни обычная вода является проводником и это не требует доказательств. Однако для импульсных устройств типа емкостных накопителей энергии вода является наиболее подходящим диэлектриком. Действительно, у хорошо очищенной воды r ≈106 Ом·м, и при e ≈80, значение t превышает 500 мксек. Значение W для импульсов длительностью 1 мксек и менее максимально в сравнению с аналогичным параметром для других диэлектриков. Ясно, что вода может считаться хорошим диэлектриком для этого случая. Обычная водопроводная вода имеет r ≈ 10-100 Ом×м , следовательно она является проводником практически для любых импульсов напряжения.

Для ряда случаев схема замещения диэлектрика может представляться в виде последовательного соединения емкости и небольшого сопротивления r. При этом значения емкостей при параллельном и последовательном представлениях близки друг другу, тогда как сопротивления сильно различаются. Для хороших диэлектриков R>>r.

 

8.2 Особенности электропроводности для различных агрегатных состояний.

 

 


Дата добавления: 2018-05-12; просмотров: 270; Мы поможем в написании вашей работы!

Поделиться с друзьями:






Мы поможем в написании ваших работ!