Существует 2 вида холинорецепторов - М и Н.



М-холинорецепторы - чувствительны к мускалину (яду мухомора) - расположены в основном во внутренних органах, эндокринных железах, сердце, сосудах, дыхательных путях, желудочнокишечном тракте. Они обладают медленным, но продолжительным действием, могут суммировать возбуждение. Существуют 2 вида М-холинорецепторов: одна - во внутренних органах, другая - в эндокринных железах. При возбуждении М-холинорецепторв происходит торможение сердечной деятельности, раширение сосудов, активация деятельности желудочно-кишечного тракта, изменяется секреция некоторых эндокринных желёз.

Н-холинорецепторы - чувствительны к никотину. Располагаются в вегетативных ганглиях, мионевральных синапсах, в хлорофильной ткани надпочечников. Эти рецепторы обладают быстрым, кратковременным действием, не могут суммировать возбуждение. Существует 3 разновидности. За счёт наличия разновидностей рецепторы могут блокироваться различными веществами. В центральной нервной системе больше Н-холинорецепторов. М-холинорецепторы преобладают в области ствола мозга, подкорковых узлах, лимбической системе, ретикулярной формации, гипоталамусе.

Адренергические механизмы нервной системы осуществляются за счет норадреналина - составляет 90 % и других катехоламинов - 10 %.

Предшественник норадреналина - изопропилнораденалин, дофамин. Для синтеза необходимы аминокислоты тиронин, фениламин, которые поступают с постсинапсической мембраны и из тела нейрона. Любые структуры могут образовывать норадреналин, но 95 % его образуется на пресимпатической мембране.

Ферменты синтеза норадреналина - трансаминазы.

Ферменты разрушения ноадреналина - группа катехоламинтрансфераз, часто моноаминоуксусная кислота и моноаминооксидант.

Адренорецепторы - белковые молекулы, обладающие сродством к норадреналину и его производным. Эти рецепторы - наружная субъединица крайней белковой молекулы, внутренняя субъединица может быть ферментом (адемилат- и гуанилатциклазы). При взаимодействии с рецептором изменяется структура молекулы белка и, как следствие, изменяется активность фермента.

Существуют 2 вида адренорецепторов:

Альфа-адренорецепторы - блокируется дегидроэрготамином, обладают повышенной чувствительностью и норадреналину, имеют низкий порог раздражения, при выделении необходимого количества медиатора возбуждаются альфа-рецепторы. Они расположены в некоторых внутренних органах и сосудистой стенке, встречается в центральной нервной системе. Различают альфа 1- и альфа 2-адренорецепторы.

Альфа 1-адренорецепторы - при их возбуждении происходит сужение сосудов, сокращение капсулы селезёнки, матки (особенно беременной), сужение зрачка и т. д. Происходит торможение желудочнокишечного тракта (моторной и секреторной), сокращение сфинктеров.

Альфа 2-адренорецепторы - в основном в центральной нервной системе.

Бетта-адренорецепторы - блокруются бетта-блокаторами (пропранолол). Они обладают высоким порогом раздражения, т. к. имеют меньшее сродство к норадреналину. Чувствительны к различным производным норадреналина (изопротеренолол).

Бетта 1-адренорецепторы - в миокарде; при их возбуждении увеличивается сила сердечных сокращений, ускоряются обменные процессы в миокарде, несколько увеличивается частота сердечных сокращений.

Бетта 2-адренорецепторы - в сосудах, внутренних органах, эндокринных железах. При их возбуждении обеспечивается тормозной эффект, расширение сосудов (коронарных, скелетных мышц), расслабление гладких мышц, дыхательных путей. В сосудах могут встречаться альфа 1- и бетта 2-рецепторы. Альфа 1-рецепторы обеспечивают сужение, а бетта 2 - расширение сосудов. Эффект зависит от: количества медиаторов, количества рецепторов данного вида.

  1. Общие принципы гуморальной регуляции функций. Роль специфических и неспецифических метаболитов в регуляции функций.

    Гуморальная регуляция – способ передачи информации через внутреннюю жидкую среду организма с помощью химических веществ, вырабатываемых специализированными клетками и органами. БАВ – вещества, которые способны в небольших концентрациях производить значительных эффект.

Отличия гуморальной регуляции от нервной:

-Влияние на весь организм в целом, не имеет конкретного адресата.

-Влияние распространяется медленнее.

-Гуморальное действие более длительное.

Все биологически активные вещества делятся:

Неспецифические метаболиты – продукты метаболизма, вырабатываемые любой клеткой в процессе жизнедеятельности, обладающие биологической активностью и оказывающие влияние на любую клетку организма. Например – молочная кислота, углекислый газ и т.п.

Специфические метаболиты - продукты жизнедеятельности, вырабатываемые определенными специализированными видами клеток, обладающие биологической активностью и специфичностью действия.

Тканевые гормоны (парагормоны) – БАВ, оказывающие эффект в основном на месте выработки.

Истинные гормоны – вещества, образующиеся в специализированных органах – эндокринных железах.

Нейрогуморальная регуляция – форма регуляции процессов в организме, при которой нервные импульсы и переносимые кровью и лимфой вещества выступают как звенья единого регуляторного процесса.

  1. Гормональная регуляция. Понятие о гормонах, их классификация и свойства. Парагормоны. Типы функционального влияния гормонов

Внутренняя секреция – процесс образования и выделения эндокринными железами непосредственно в кровь или другие тканевые жидкости специфических физиологически высоко активных продуктов – гормонов.

Эндокринные железы: гипоталамус, гипофиз, щитовидная железа, паращитовидная железа, поджелудочная железа, надпочечники, половые железы, эпифиз, тимус.

Гормоны – биологически активные вещества, выделяемые железами внутренней секреции.

Классификация:

I. по месту действия: эффекторные (действуют на клетки-эффекторы) и тропные (действуют на другие эндокринные железы)

II. по химической природе: белки и полипептиды, производные аминокислот, стероиды.

III. по эффекту: стимулирующие и тормозящие.

VI. по механизму действия на клетки-мишени: действующие посредством мембранных рецепторов и действующие посредством внутриклеточных рецепторов.

Общие свойства гормонов:

Обладают очень высокой активностью и действуют в очень низких концентрациях.

Функциональное влияние гормонов:

Пусковое– способность гормона запускать деятельность эффектора.

Моделирующее – изменение интенсивности деятельности органа.

Пермиссивное – способность одного гормона обеспечивать реализацию эффекта другого гормона.

Парагормоны – вырабатываются специфическими клетками, обладают местной специфичностью.

Вещество Место выработки Эффект
Серотонин Слизистая кишечника, головной мозг, тромбоциты Медиатор ЦНС, сосудосуживающий эффект, сосудисто-тромбоцитарный гемостаз
Простагландины Ткани организма Сосудодвигательное действие, усиление сокращений матки, усиление выведения воды и натрия, снижение активности пищеварительных функций.
Брадикинин Плазма крови, слюнные железы, легкие Сосудорасширяющее действие, повышает сосудистую проницаемость
Ацетилхолин Головной мозг, ганглии, нервно-мышечные синапсы. Расслабляет гладкую мускулатуру сосудов, урежает сердечные сокращения.
Гистамин Желудок и кишечник, кожа, тучные клетки, базофилы Медиатор болевых рецепторов, расширяет микрососуды, повышает секрецию желез желудка.
Эндорфины, энкефалины Головной мозг Обезболивающий и адаптивный эффекты.
Гастроинтестинальные гормоны Отделы ЖКТ Регуляция процессов секреции, моторики и всасывания.

 

  1. Механизмы действия гормонов. Понятие об органах и клетках-мишенях, клеточных рецепторах. Формирование гормонального ответа на клеточном уровне. Комплекс гормон-рецептор. Вторичные посредники. Различия в механизме действия стероидных и белковых гормонов.

Действие гормонов на клеточном уровне осуществляется по двум основным механизмам: не проникающие в клетку гормоны (обычно водорастворимые) действуют через рецепторы на клеточной мембране, а легко проходящие через мембрану гормоны (жирорастворимые) – через рецепторы в цитоплазме клетки. Во всех случаях только наличие специфического белка-рецептора определяет чувствительность клетки к данному гормону, т.е. делает ее «мишенью». Первый механизм действия, подробно изученный на примере адреналина, заключается в том, что гормон связывается со своими специфическими рецепторами на поверхности клетки; связывание запускает серию реакций, в результате которых образуются т.н. вторые посредники, оказывающие прямое влияние на клеточный метаболизм. Такими посредниками служат обычно циклический аденозиномонофосфат (цАМФ) и/или ионы кальция; последние высвобождаются из внутриклеточных структур или поступают в клетку извне. И цАМФ, и ионы кальция используются для передачи внешнего сигнала внутрь клеток у самых разнообразных организмов на всех ступенях эволюционной лестницы. Однако некоторые мембранные рецепторы, в частности рецепторы инсулина, действуют более коротким путем: они пронизывают мембрану насквозь, и когда часть их молекулы связывает гормон на поверхности клетки, другая часть начинает функционировать как активный фермент на стороне, обращенной внутрь клетки; это и обеспечивает проявление гормонального эффекта.

Второй механизм действия – через цитоплазматические рецепторы – свойствен стероидным гормонам (гормонам коры надпочечников и половым), а также гормонам щитовидной железы (T3 и T4). Проникнув в клетку, содержащую соответствующий рецептор, гормон образует с ним гормон-рецепторный комплекс. Этот комплекс подвергается активации (с помощью АТФ), после чего проникает в клеточное ядро, где гормон оказывает прямое влияние на экспрессию определенных генов, стимулируя синтез специфических РНК и белков. Именно эти новообразованные белки, обычно короткоживущие, ответственны за те изменения, которые составляют физиологический эффект гормона.

Свое действие гормоны оказывают не на все клетки и ткани организма, а лишь на так называемые клетки-мишени. Для того, чтобы действие гормонов оказывалось выборочным, клетки-мишени имеют на своей поверхности специфические рецепторные участки - мембранные, клеточные рецепторы, взаимодействующие с данным гормоном.

Клетки-мишени - это клетки, имеющие специальные рецепторы к молекулам гормонов.

То же самое и проорганы-мишени – это органы, в составе которых имеются клетки, имеющие специальные рецепторы к молекулам БАВ.

Клеточный рецептор — молекула на поверхности клетки(клеточных органелл). Она специфично реагирует изменением своей пространственной конфигурации на присоединение к ней молекулы БАВ, передающего внешний регуляторный сигнал и передает этот сигнал внутрь клетки или клеточной органеллы, нередко при помощи так называемых вторичных посредников.

Гормоны (первичные посредники) связываются с рецепторами на поверхности клеточной мембраны и образуют комплекс гормон-рецептор. Этот комплекс трансформирует сигнал первичного посредника путем изменения концентрации внутри клетки вторичных посредников. Вторичными посредниками являются: циклический АМФ (цАМФ), цГМФ, инозитолтрифосфат (ИФ3), диацилглицерол (ДАГ); Са2+, NO (оксид азота II).

В отличие от пептидов, активирующих ферменты, стероидные гормоны вызывают синтез новых ферментных молекул. В связи с этим эффекты стероидных гормонов проявляются намного медленнее, чем действие пептидных гормонов, но длятся обычно дольше.

  1. Гипоталамо-гипофизарная система, ее роль в регуляции функций.

 

Часть промежуточного мозга — гипоталамус — и отходящий от его основания гипофиз анатомически и функционально составляют единое целое - гипоталамо-гипофизарную эндокринную систему.

Клетки гипоталамуса обладают двойной функцией. Во-первых, они выполняют те же функции, что и любая другая нервная клетка, а во-вторых, обладают способностью секретировать и выделять биологически активные вещества – нейрогормоны (этот процесс называют нейросекрециеи). Гипоталамус и передняя доля гипофиза связаны общей сосудистой системой, имеющей двойную капиллярную сеть. Первая располагается в районе срединного возвышения гипоталамуса, а вторая — в передней доле гипофиза. Ее называют воротной системой гипофиза.

Нейроэндокринные системы гипоталамуса:

-Гипоталамо-экстрагипоталамическая система

-Гипоталамо-аденогипофизарная система

-Гипоталамо-среднегипофизарная система

-Гиноталамо-нейрогипофизарная система

Нейросекреторные клетки гипоталамуса синтезируют нейропептиды, которые поступают в переднюю и заднюю доли гипофиза. Нейропептиды, влияющие на клетки передней доли гипофиза, называются рилизинг-факторами, а задней — нейрогормонами (вазопрессин и окситоцин).

  1. Гипофиз. Гормоны передней, средней и задней долей гипофиза, их физиологическая роль.

Гипофиз– это небольшой придаток мозга, который находится рядом с гипоталамусом. Эта железа очень маленькая.

Состоит он из трех долей – передней, задней и средней или промежуточной. Каждая часть выделяет определенные гормоны, от которых зависит состояние здоровья человека.

Гипофизом управляет гипоталамус, а сам орган регулирует работу щитовидки.
Какую роль выполняют доли гипофиза:

Передняя часть вырабатывает гормоны.

Задняя – хранит секрецию окситоцина и вазопрессина.

Функция средней доли – синтез мелацитстимулирующих гормонов.

 

Гормоны передней части

Кортикотропин АКТГ отвечает за степень активности надпочечников и синтез ими стероидных веществ и кортизола. Кортикотропин помогает успешно справиться со стрессовой ситуацией, влияет на половое развитие и репродуктивную функцию человека.
Тиреотропин ТТГ — один из гормонов передней доли гипофиза. Он руководит деятельностью щитовидной железы (улучшает усвоение йода, усиливает кровообращение) и стимулирует выработку трийодтиронина (Т3) и тироксина (Т4). · Гормоны щитовидной железы и гипофиза взаимосвязаны: временная дисфункция одного органа автоматически влечет за собой повышение активности другого. Каковы функции гипофиза и щитовидной железы в деятельности организма? Они отвечают за обмен веществ, стабильную работу сердечно-сосудистой и репродуктивной системы, функциональность ЖКТ. Уровень ТТГ зависит от времени суток, возраста и пола человека.
Фоллитропин ФСГ отвечает за формирование приоритетного фолликула, а в дальнейшем за его разрыв и изгнание из яйцеклетки. Активность фоллитропина зависит от фазы месячного цикла.
Лютропин ЛГ отвечает за наступление овуляции, развитие желтого тела и его функциональность в течение двух недель. В основе теста на овуляцию, так популярного среди желающих зачать ребенка, лежит повышение лютропина за сутки до выхода созревшей яйцеклетки из яичника.
Соматотропин Соматотропный гормон влияет на рост и развитие организма. От него зависит длина трубчатых костей рук и ног, синтез белка. После 35 лет уровень вещества начинает неуклонно снижаться. Кроме того, соматотропный гормон работает как иммуностимулятор, корректирует количество углеводов, уменьшает жировые отложения, несколько притупляет тягу к сладкому. Количество гормона в крови меняется несколько раз за сутки. Его максимум отмечается ночью. В течение дня соматропин имеет множество пиков, которые наступают через каждые 4 часа.
Пролактин Совместно с прогестероном, пролактин способствует росту и развитию молочных желез у женщин, а также регулирует количество молока в период лактации. У мужчин он контролирует секрецию тестостерона и отвечает за сперматогенез. Кроме того, этот гормон гипофиза называют стрессовым. Его уровень в крови резко повышается при чрезмерных физических нагрузках и эмоциональных перенапряжениях.

Гормоны задней части:

Окситоцин Окситоцин является нейромедиатором. У мужчин усиливает потенцию, у женщин отвечает за формирование материнского инстинкта. Уровень вещества повышается от хорошего настроения. Тревога, боль и стресс тормозят выработку окситоцина.
Вазопрессин Уровень вазопрессина резко повышается при больших потерях крови, понижении АД, обезвоживании организма. Вещество эффективно выводит из тканей натрий, напитывает их влагой, а совместно с окситоцином стимулирует мозговую деятельность.

Гормоны промежуточной доли:

Меланоцитостимулирующий МСГ отвечает за выработку меланина и защиту кожного покрова от УФ лучей. Медики считают, что именно МСГ провоцирует активный рост меланоцитов и их дальнейшее перерождение в раковую опухоль.
Липотропин Вещество стимулирует сжигание углеводов в организме, уменьшает жировые отложения.
Эндорфин Бета-эндорфин снижает порог боли и стресса, отвечает за реакцию организма в состоянии шока, притупляет аппетит.

 

  1. Щитовидная железа. Гормоны щитовидной железы, их физиологическая роль.


Щитовидная железа расположена с обеих сторон трахеи ниже щитовидного хряща, имеет дольчатое строение. Структурной единицей является фолликул, заполненный коллоидом, где находится йодсодержа-щий белок – тиреоглобулин.
Гормоны щитовидной железы делятся на две группы:
1) йодированные – тироксин, трийодтиронин;
2) тиреокальцитонин (кальцитонин). Йодированные гормоны образуются в фолликулах
железистой ткани.
Основной активный гормон щитовидной железы – тироксин, соотношение тироксина и трийодтиронина составляет 4: 1. Оба гормона находятся в крови в неактивном состоянии, они связаны с белками глобули-новой фракции и альбумином плазмы крови.
Роль йодированных гормонов:
1) влияние на функции ЦНС. Гипофункция ведет к резкому снижению двигательной возбудимости;
2) влияние на высшую нервную деятельность. Включаются в процесс выработки условных рефлексов;
3) влияние на рост и развитие;
4) влияние на обмен веществ;
5) влияние на вегетативную систему. Увеличивается число сердечных сокращений, дыхательных движений, повышается потоотделение;
6) влияние на свертывающую систему крови. Снижают способность крови к свертыванию, повышают ее фибринолитическую активность.
Тиреокальцитоцин образуется парафолликуляр-ными клетками щитовидной железы, которые расположены вне железистых фолликул. Он принимает участие в регуляции кальциевого обмена, под его влиянием уровень Ca снижается. Тиреокальцито-цин понижает содержание фосфатов в периферической крови.
Тиреокальцитоцин тормозит выделение ионов Ca из костной ткани и увеличивает его отложение в ней.
Секреции тиреокальцитонина способствуют некоторые биологически активные вещества: гастрин, глюкагон, холецистокинин.
Недостаточность выработки гормона (гипотериоз), появляющаяся в детском возрасте, ведет к развитию кретинизма (задерживаются рост, половое развитие, развитие психики, наблюдается нарушение пропорций тела).
Недостаточность выработки гормона ведет к развитию микседемы, которая характеризуется резким расстройством процессов возбуждения и торможения в ЦНС, психической заторможенностью, снижением интеллекта, вялостью, сонливостью.
При повышении активности щитовидной железы (гипертиреозе) возникает заболевание тиреотоксикоз. Характерные признаки: увеличение размеров щитовидной железы, числа сердечных сокращений, повышение обмена веществ. Наблюдаются повышенная возбудимость и раздражительность.

  1. Паращитовидные железы. Гормоны паращитовидных желез, их физиологические значение.

Паращитови́дные же́лезы (паратиреоидные железы, околощитовидные железы) — четыре небольших эндокринных железы, расположенные по задней поверхности щитовидной железы, попарно у её верхних и нижних полюсов. Вырабатывают паратиреоидный гормон, или паратгормон.

Паратгормон — вырабатывается скоплениями секреторных клеток в паренхиме железы.

Необходим для поддержания концентрации ионов кальция в крови на физиологическом уровне.

Снижение уровня ионизированного кальция в крови активирует секрецию паратгормона, который повышает высвобождение кальция из кости за счёт активации остеокластов. (Уровень кальция в крови повышается, но кости теряют жёсткость и легко деформируются.)

Гормон паращитовидной железы приводит к эффектам, противоположным по действию тиреокальцитонина, секретируемого С-клетками щитовидной железы.

Регуляция деятельности паращитовидных желез осуществляется по принципу обратной связи, регулирующим фактором является уровень кальция в крови, регулирующим гормоном — паратгормон.

Органами-мишенями для паратгормона являются скелет и почки; паратгормон оказывает также влияние на кишечник, усиливая всасывание кальция. В костях паратгормон активирует резорбтивные процессы, что сопровождается поступлением кальция и фосфатов в кровь (с чем и связано повышение концентрации кальция в крови под действием паратгормона).
Влияние паратгормона на остеокласты ингибируется кальцитонином. Деминерализация костной ткани при избытке паратгормона сопровождается увеличением активности щелочной фосфатазы в сыворотке крови и повышением выведения оксипролина (специфического компонента коллагена) с мочой из-за резорбции под влиянием паратгормона органического матрикса кости. В почках паратгормон уменьшает реабсорбцию фосфата в дистальных отделах почечных канальцев. Значительное увеличение выведения фосфатов с мочой (фосфатурический эффект паратгормона) сопровождается понижением содержания фосфора в крови. Несмотря на некоторое усиление реабсорбции кальция в почечных канальцах под влиянием паратгормона, выделение кальция с мочой из-за нарастающей гиперкальциемии в конечном счете увеличивается.

Ги́попаратирео́з — патология, объединяющая ряд состояний, характеризующихся снижением некоторых или всех эффектов паратгормона, что сопровождается гипокальциемией. Клиническая картина: повышенная чувствительность ЦНС, судороги, смерть от тетании.

Гиперпаратиреоз – эндокринопатия, в основе которой лежит избыточная продукция паратгормона паращитовидными железами. Клиническая картина: быстрая утомляемость при нагрузке, мышечная слабость, головная боль, возникновение трудностей при ходьбе, характерна переваливающаяся походка, ухудшение памяти, эмоциональная неуравновешенность, тревожность, депрессия, размягчение, искривление, патологические переломы костей, возникают рассеянные боли в костях рук и ног, позвоночнике, расшатываются и выпадают здоровые зубы, периартикулярные кальцинаты.

 

  1. Надпочечники. Гормоны коркового и мозгового вещества надпочечников, их физиологическое значение.

Мозговое вещество

Находясь в более глубокой части железы, мозговое вещество состоит из ткани, содержащей большое количество кровеносных сосудов. Благодаря мозговому веществу в ситуации боли, страха, стресса вырабатываются два основных гормона: адреналин и норадреналин. Сердечная мышца начинает усиленно сокращаться. Поднимается артериальное давление, может происходить спазм мышц.

Корковое вещество

На поверхности надпочечника располагается корковое вещество, строение которого подразделяется на три зоны. Клубочковая зона, расположенная под капсулой, содержит скопление клеток, собранных в группки неправильной формы, которые разделяются кровеносными сосудами. Пучковая зона образует следующий слой, состоящий из тяжей и капилляров. Между мозговым и корковым веществом располагается третья зона – сетчатая, которая включает в себя более крупные тяжи расширенных капилляров. Гормоны коры надпочечника принимают участие в процессе роста организма, обменных функциях.

  1. Эндокринная функция поджелудочной железы. Ее роль в регуляции обмена веществ.

 Поджелудочная железа – железа со смешанной функцией. Морфологической единицей железы служат островки Лангерганса, преимущественно они расположены в хвосте железы. Бета-клетки островков вырабатывают инсулин, альфа-клетки – глюкагон, дельта-клетки – соматостатин. В экстрактах ткани поджелудочной железы обнаружены гормоны ваготонин и центропнеин.

Инсулинрегулирует углеводный обмен, снижает концентрацию сахара в крови, способствует превращению глюкозы в гликоген в печени и мышцах. Он повышает проницаемость клеточных мембран для глюкозы: попадая внутрь клетки, глюкоза усваивается. Инсулин задерживает распад белков и превращение их в глюкозу, стимулирует синтез белка из аминокислот и их активный транспорт в клетку, регулирует жировой обмен путем образования высших жирных кислот из продуктов углеводного обмена, тормозит мобилизацию жира из жировой ткани.

В бета-клетках инсулин образуется из своего предшественника проинсулина. Он переносится в клеточные аппарат Гольджи, где происходят начальные стадии превращения проинсулина в инсулин.

В основе регуляции инсулина лежит нормальное содержание глюкозы в крови: гипергликемия приводит к увеличению поступления инсулина в кровь, и наоборот.

Паравентрикулярные ядра гипоталамуса повышают активность при гипергликемии, возбуждение идет в продолговатый мозг, оттуда в ганглии поджелудочной железы и к бета-клеткам, что усиливает образование инсулина и его секрецию. При гипогликемии ядра гипоталамуса снижают свою активность, и секреция инсулина уменьшается.Гипергликемия непосредственно приводит в возбуждение рецепторный аппарат островков Лангерганса, что увеличивает секрецию инсулина. Глюкоза также непосредственно действует на бета-клетки, что ведет к высвобождению инсулина.

Глюкагон повышает количество глюкозы, что также ведет к усилению продукции инсулина. Аналогично действует гормоны надпочечников.

ВНС регулирует выработку инсулина посредством блуждающего и симпатического нервов. Блуждающий нерв стимулирует выделение инсулина, а симпатический тормозит.

 Количество инсулина в крови определяется активностью фермента инсулиназы, который разрушает гормон. Наибольшее количество фермента находится в печени и мышцах. При однократном протекании крови через печень разрушается до 50 % находящегося в крови инсулина.

Важную роль в регуляции секреции инсулина выполняет гормон соматостатин, который образуется в ядрах гипоталамуса и дельта-клетках поджелудочной железы. Соматостатин тормозит секрецию инсулина.

Глюкагон принимает участие в регуляции углеводного обмена, по действию на обмен углеводов он является антагонистом инсулина. Глюкагон расщепляет гликоген в печени до глюкозы, концентрация глюкозы в крови повышается. Глюкагон стимулирует расщепление жиров в жировой ткани.

Механизм действия глюкагона обусловлен его взаимодействием с особыми специфическими рецепторами, которые находятся на клеточной мембране. При связи глюкагона с ними увеличивается активность фермента аденилатциклазы и концентрации цАМФ, цАМФ способствует процессу гликогенолиза.

Регуляция секреции глюкагона. На образование глюкагона в альфа-клетках оказывает влияние уровень глюкозы в крови. При повышении глюкозы в крови происходит торможение секреции глюкагона, при понижении – увеличение. На образование глюкагона оказывает влияние и передняя доля гипофиза.

Гормон роста соматотропин повышает активность альфа-клеток. В противоположность этому гормон дельта-клетки – соматостатин тормозит образование и секрецию глюкагона, так как он блокирует вхождение в альфа-клетки ионов Ca, которые необходимы для образования и секреции глюкагона.

Липокаин способствует утилизации жиров за счет стимуляции образования липидов и окисления жирных кислот в печени, он предотвращает жировое перерождение печени.

Ваготонин повышает тонус блуждающих нервов, усиливает их активность.

Центропнеин участвует в возбуждении дыхательного центра, содействует расслаблению гладкой   мускулатуры бронхов, повышает способность гемоглобина связывать кислород, улучшает транспорт кислорода.

  1. Половые железы, мужские и женские половые гормоны, их физиологическая роль в формировании пола

Половые железы (семенники у мужчин, яичники у женщин) относятся к железам со смешанной функцией, внутрисекреторная функция проявляется в образовании и секреции половых гормонов, которые непосредственно поступают в кровь.

Мужские половые гормоны – андрогены образуются в интерстициальных клетках семенников. Различают два вида андрогенов – тестостерон и андростерон.

Андрогены стимулируют рост и развитие полового аппарата, мужских половых признаков и появление половых рефлексов.

Они контролируют процесс созревания сперматозоидов, способствуют сохранению их двигательной активности, проявлению полового инстинкта и половых поведенческих реакций, увеличивают образование белка, особенно в мышцах, уменьшают содержание жира в организме. При недостаточном количестве андрогена в организме нарушаются процессы торможения в коре больших полушарий.

Женские половые гормоны образуются в яичниках. Синтез эстрогенов осуществляется оболочкой фолликула, прогестерона – желтым телом яичника, которое развивается на месте лопнувшего фолликула.

Эстрогеныстимулируют рост матки, влагалища, труб, вызывают разрастание эндометрия, способствуют развитию вторичных женских половых признаков, проявлению половых рефлексов, усиливают сократительную способность матки, повышают ее чувствительность к окситоцину, стимулируют рост и развитие молочных желез.

Прогестерон обеспечивает процесс нормального протекания беременности, способствует разрастанию слизистой эндометрия, имплантации оплодотворенной яйцеклетки в эндометрий, тормозит сократительную способность матки, уменьшает ее чувствительность к окситоцину, тормозит созревание и овуляцию фолликула за счет угнетения образования лютропина гипофиза.

Образование половых гормонов находится под влиянием гонадотропных гормонов гипофиза и пролактина. У мужчин гонадотропный гормон способствует созреванию сперматозоидов, у женщин – росту и развитию фолликула. Лютропин определяет выработку женских и мужских половых гормонов, овуляцию и образование желтого тела. Пролактин стимулирует выработку прогестерона. Мелатонин тормозит деятельность половых желез.

Нервная система принимает участие в регуляции активности половых желез за счет образования в гипофизе гонадотропных гормонов. ЦНС регулирует протекание полового акта. При изменении функционального состояния ЦНС могут произойти нарушение полового цикла и даже его прекращение.

  1. Кровь, как разновидность соединительной ткани. Понятие о системе крови (Г.Ф. Ланг), ее свойства и функции. Основные физиологические константы крови.

Кровь - это жидкая ткань, циркулирующая по сосудам, осуществляющая транспорт различных веществ в пределах организма и обеспечивающая питание и обмен ве­ществ всех клеток тела.

В понятие "система крови" (Г. Ф. Ланг, 1939) входят: кровь, органы кроветворения (красный костный мозг, лимфатические узлы и др.), органы кроворазрушения и механизмы регуляции (регулирующий нейрогуморальный аппарат).

Кровь состоит из жидкой части - плазмы и взвешенных в ней клеток - форменных элементов: эритроцитов, лейкоцитов и тромбоцитов. На долю форменных элементов в циркулирующей крови приходится 40-45%, на долю плазмы - 55-60%. Плазма содержит 90-92% воды и 8-10% сухого остатка, главным об­разом белков (7-8%) и минеральных солей (1%). Белки плазмы (их более 30) включают 3 основные группы:

1) альбумины(около 4,5%) обеспечивают онкотическое давление, связывают лекарственные вещества, витамины, гормоны, пигменты;

2) глобулины(2-3%) обеспечивают транспорт жиров, липоидов в составе липопротеинов, глюкозы - в составе гликопротеинов, меди, железа - в составе трансферрина, выработку антител, а также а- и р-агглютининов крови;

3) фибриноген (0,2-0,4%) участвует в свертывании крови.

Небелковые азотсодержащие соединения плазмы включают: ами­нокислоты, полипептиды, мочевину, креатинин, продукты распада нук­леиновых кислот и т.д.

Общее количество крови в организме взрослого человека в норме составляет 6-8% массы тела и равно примерно 4,5-6 л.

Физиологические функции крови:

1) дыхательная - перенос кислорода от легких к тканям и углекисло­го газа от тканей к легким;

2) трофическая (питательная) - доставка питательных веществ, вита­минов, минеральных солей и воды от органов пищеварения к тканям;

3) экскреторная (выделительная) - удаление из тканей конечных про­дуктов метаболизма, лишней воды и минеральных солей;

4) терморегуляторная - регуляция температуры тела путем охлаж­дения энергоемких органов и согревания органов, теряющих тепло;

5) гомеостатическая - поддержание стабильности ряда констант го­меостаза: pH, осмотического давления, изоионии и т.д.;

6) регуляция водно-солевого обмена между кровью и тканями;

7) защитная - участие в клеточном (лейкоциты), гуморальном (анти­тела) иммунитете, в свертывании для прекращения кровотечения;

8) гуморальная регуляция - перенос гормонов, медиаторов и др.;

9) креаторная- перенос макромолекул, осу­ществляющих межклеточную передачу информации с целью восстановле­ния и поддержания структуры тканей.

Основные константы крови:

1.Относительная плотность крови. Колеблется от 1,058 до 1,062 и зависит преимущественно от содержания эритроцитов. Относительная плотность плазмы крови в основном определяется концентрацией белков и составляет 1,029—1,032 .

2. Вязкость крови зависит главным образом от содержания эритроцитов и в меньшей степени от белков плазмы. Определяется по отношению к вязкости воды и соответствует 4,5—5,0. Вязкость плазмы не превышает 1,8—2,2. При обильном белковом питании вязкость плазмы, а, следовательно, и крови может повышаться.

3. Осмотическим давлением называется сила, которая заставляет переходить растворитель (для крови это вода) через полупроницаемую мембрану из менее в более концентрированный раствор.

4. Онкотическое давление. Не превышает 30 мм рт.ст. Онкотическое давление в большей степени зависит от альбуминов.

5. Температура крови - 37—40°С

6. Общее количество крови в организме взрослого человека приблизительно 5—6 л.

  1. Плазма крови, ее состав. Физико-химические свойства крови. Белки плазмы крови, их характеристика и функциональное значение.

Плазма крови — это жидкая часть крови желтоватого цвета.

Плазма содержит 90-92% воды и 8-10% сухого остатка, главным об­разом белков (7-8%) и минеральных солей (1%). Белки плазмы (их более 30) включают 3 основные группы:

1) альбумины (около 4,5%) обеспечивают онкотическое давление, связывают лекарственные вещества, витамины, гормоны, пигменты. Синтез альбуминов происходит в печени.;

2) глобулины(2-3%) обеспечивают транспорт жиров, липоидов в составе липопротеинов, глюкозы - в составе гликопротеинов, меди, железа - в составе трансферрина, выработку антител, а также а- и р-агглютининов крови. Большая часть синтезируется в лимфоидных и плазматических клетках ретикулоэндотелиальной системы, часть - в печени. По фракциям их содержание следующее:

альфа1-глобулины - 0,22-0,55 г% (4-5%)

альфа2-глобулины - 0,41-0,71г% (7-8%)

бета-глобулины - 0,51-0,90 г% (9-10%)

гамма-глобулины - 0,81-1,75 г% (14-15%)

Гамма-глобулины являются носителями иммунных тел. Альфа- и бета- глобулины тоже имеют антигенные свойства, но специфической их функцией является участие в процессах свертывания (это плазменные факторы свертывания крови). ;

3) фибриноген (0,2-0,4%) участвует в свертывании крови.

Небелковые азотсодержащие соединения плазмы включают: ами­нокислоты, полипептиды, мочевину, креатинин, продукты распада нук­леиновых кислот и т.д. Безазотистые органические вещества плазмы крови представлены такими продуктами, как молочная кислота, глюкоза (80-120 мг%), липиды, органические вещества пищи и многие другие. Общее их количество не превышает 300-500 мг%. Минеральные вещества плазмы - это в основном катионы Na+, К+, Са+, Mg++ и анионами Cl-, HCO3, HPO4, H2PO4. Общее количество минеральных веществ (электролитов) в плазме достигает 1%.

Осмотическим давлением называется сила, которая заставляет переходить растворитель (для крови это вода) через полупроницаемую мембрану из менее в более концентрированный раствор.

Осмотическое давление, создаваемое белками (т.е. их способность притягивать воду), называется онкотическим.Онкотическое давление более чем на 80% определяется альбуминами, что связано с их относительно малой молекулярной массой и большим количеством молекул в плазме. Онкотическое давление играет важную роль в регуляции водного обмена. Чем больше его величина, тем больше воды удерживается в сосудистом русле и тем меньше ее переходит в ткани, и наоборот. Онкотическое давление влияет на образование тканевой жидкости, лимфы, мочи и всасывание воды в кишечнике.

Физико-химические свойства крови:

Суспензионное свойство — кровь является суспензией, в которой форменные элементы находятся во взвешенном состоянии.

Факторы, обеспечивающие это свойство:

-содержание мелко- и грубодисперсных белков в плазме; мелкодисперсные белки имеют гидрофильные свойства и поддерживают форменные элементы во взвешенном состоянии; у грубодисперсных белков — гидрофобные свойства способствуют оседанию форменных элементов;

-количество форменных элементов, чем их больше, тем больше выражены суспензионные свойства крови;

-вязкость крови — чем больше вязкость, тем больше суспензионные свойства;

-Показатель суспензионного свойства — скорость оседания эритроцитов (СОЭ).

Коллоидные свойства — выражены в способности белков удерживать воду в сосудистом русле — этим свойством обладают гидрофильные мелкодисперсные белки.

Электролитные свойства — за счет содержания ионов. Это свойство обеспечивает определенную величину осмотического давления крови.

  1. Общая характеристика форменных элементов крови (эритроцитов, лейкоцитов, тромбоцитов) и их роль в организме.

Кровь — это жидкая соединительная ткань, которая состоит из жидкой части - плазмы и взвешенных в ней клеток -форменных элементов: эритроцитов (красных клеток крови), лейкоцитов (белых клеток крови), тромбоцитов(кровяных пластинок). У взрослого человека форменные элементы крови составляют около 40-48%

Эритроциты – красные кровяные тельца, содержащие дыхательный пигмент – гемоглобин. Эти безъядерные клетки образуются в красном костном мозге, а разрушаются в селезенке. Функции эритроцитов:

1. дыхательная (связана с наличием гемоглобина и бикарбоната калия, за счет которых осуществляется перенос дыхательных газов);

2. питательная (связана со способностью мембраны клеток адсорбировать аминокислоты и липиды, которые с током крови транспортируются от кишечника к тканям);

3. ферментативная (обусловлена присутствием на мембране карбоангидразы, метгемоглобинредуктазы, глютатионредуктазы, пероксидазы, истинной холинэстеразы);

4. защитная (осуществляется в результате оседания токсинов микробов и антител, а также за счет присутствия факторов свертывания крови и фибринолиза);

5. буферная.

Лейкоциты – ядросодержащие клетки крови. Уровень клеток в крови непостоянен и подвержен суточными и сезонным колебаниям в соответствии с изменением интенсивности обменных процессов.

Лейкоциты делятся на две группы: гранулоциты (зернистые) и агранулоциты.

Важнейшими из свойств являются амебовидная подвижность, миграция (способность проникать через стенку неповрежденных сосудов), фагоцитоз.

Лейкоциты выполняют в организме защитную, деструктивную, регенеративную, ферментативную функции:

-Защитное свойство связано с бактерицидным и антитоксическим действием агранулоцитов, участием в процессах свертывания крови и фибринолиза.

-Деструктивное действие заключается в фагоцитозе отмирающих клеток.

-Регенеративная активность способствует заживлению ран.

-Ферментативная роль связана с наличием ряда ферментов.

Иммунитет – способность организма защищаться от генетически чужеродных веществ и тел. Он основан на выработке антител на действие антигенов. Выделяют клеточное и гуморальное звенья иммунитета. Клеточный иммунитет обеспечивается активностью Т-лимфоцитов, а гуморальный – В-лимфоцитов.

Тромбоциты – безъядерные клетки крови.

Функции тробоцитов:

1. Трофическая функция заключается в обеспечении сосудистой стенки питательными веществами, за счет которых сосуды становятся более упругими.

2. Регуляция сосудистого тонуса достигается благодаря наличию биологического вещества – серотонина, вызывающего сокращения гладкомышечных клеток. Трамбоксан А2 (производный арахидоновой кислоты) обеспечивает наступление сосудосуживающего эффекта за счет снижения сосудистого тонуса.

3. Тромбоцит принимает активное участие в процессах свертывания крови за счет содержания в гранулах тромбоцитарных факторов, которые образуются либо в тромбоцитах, либо адсорбируются в плазме крови.

4. Динамическая функция заключается в процессах адгезии и агрегации тромбов. Адгезия – процесс пассивный, протекающий без затраты энергии. Тромб начинает прилипать к поверхности сосудов за счет интергиновых рецепторов к коллагену и при повреждении выделяется на поверхность к фибронектину. Агрегация происходит параллельно адгезии и протекает с затратой энергии. Поэтому главным фактором является наличие АДФ. При взаимодействии АДФ с рецепторами начинается активация J-белка на внутренней мембране, что вызывает активацию фосфолипаз А и С. Фосфолипаза а способствует образованию из арахидоновой кислоты тромбоксана А2 (агреганта). Фосфолипаза с способствует образованию иназитолтрифосфата и диацилглецерола. В результате активируется протеинкиназа С, повышается проницаемость для ионов Ca. В результате из эндоплазматического ретикулума они поступают в цитоплазму, где Ca активирует кальмодулин, который активирует кальцийзависимую протеинкиназу.

  1. Лейкоциты, их разновидности. Функции различных видов лейкоцитов. Клинико-физиологическая оценка лейкоцитов.

Лейкоциты или белые кровяные тельца - это клетки крови, содержащие ядро. У одних лейкоцитов цитоплазма содержит гранулы, поэтому их называют гранулоцитами. У других зернистость отсутствует, их относят к агранулоцитам. Выделяют три формы гранулоцитов. Те из них, гранулы которых окрашиваются кислыми красителями (эозином), называют эозинофилами. Лейкоциты, зернистость которых восприимчива к основным красителям, базофилами. Лейкоциты, гранулы которых окрашиваются и кислыми и основными красителями, относят к нейтрофилам. Агранулоциты подразделяются на моноциты и лимфоциты. Все гранулоциты и моноциты образуются в красном костном мозге и называются клетками миелоидного ряда. Лимфоциты также образуются из стволовых клеток костного мозга, но размножаются в лимфатических узлах, миндалинах, апендиксе, селезенке, тимусе, лимфатических бляшках кишечника. Это клетки лимфоидного ряда.

Общей функцией всех лейкоцитов является защита организма от бактериальных и вирусных инфекций, паразитарных инвазий, поддержание тканевого гомеостаза и участие в регенерации тканей.

Нейтрофилы. Количество нейтрофилов в норме в крови у взрослых относительно постоянно и колеблется в пределах от 45% до 70% . Находятся в сосудистом русле 6-8 часов. Основная функция нейтрофилов заключается в уничтожении бактерий и различных токсинов. Они обладают способностью к хемотаксису и фагоцитозу. Важным свойством нейтрофилов является то, что они могут существовать в воспаленных и отечных тканях бедных кислородом.

Базофилы содержатся в количестве 0-1%. Они находятся в кровеносном русле 12 часов. Крупные гранулы базофилов содержат гепарин и гистамин. За счет выделяемого ими гепарина ускоряется липолиз жиров в крови. Гистамин базофилов стимулирует фагоцитоз, оказывает противовоспалительное действие. В базофилах содержится фактор активирующий тромбоциты, который стимулирует их агрегацию и высвобождение тромбоцитарных факторов свертывания крови. Выделяя гепарин и гистамин, они предупреждают образование тромбов в мелких венах легких и печени. Количество базофилов резко возрастает при лейкозах, стрессовых ситуациях.

Эозинофилы (Э) содержатся в количестве 1-5%. Эозинофилы обладают способностью к фагоцитозу, связыванию белковых токсинов и антибактериальной активностью. Их гранулы содержат белок, нейтрализующий гепарин, а также медиаторы воспаления и ферменты, препятствующие агрегации тромбоцитов. Эозинофилы принимают участие в борьбе с паразитарными инвазиями. Поэтому при паразитарных заболеваниях возникает эозинофилия - повышение содержания эозинофилов. При аллергических состояниях и аутоиммунных заболеваниях, эозинофилы накапливаются в тканях, где происходит аллергическая реакция.

Моноциты наиболее крупные клетки крови. Их 2-10%. Способность макрофагов, т.е. вышедших из кровяного русла моноцитов, к фагоцитозу больше, чем у других лейкоцитов. Они могут совершать амебоидные движения. Макрофаги фагоцитируют и уничтожают микроорганизмы, простейших паразитов, старые и поврежденные, в том числе опухолевые клетки. Кроме того, макрофаги участвуют в формировании иммунного ответа, воспаления, стимулируют регенерацию тканей.

Лимфоциты составляют 20-40% всех лейкоцитов. Они делятся на Т- и В-лимфоциты. Первые дифференцируются в тимусе, вторые в различных лимфатических узлах. Т-клетки делятся на несколько групп. Т-киллеры уничтожают чужеродные белки-антигены и бактерии. Т-хелперы участвуют в реакции антиген-антитело. Т-клетки иммунологической памяти запоминают структуру антигена и распознают его. Т-амплификаторы стимулируют иммунные реакции, а Т-супрессоры тормозят образование иммуноглобулинов. В-лимфоциты составляют меньшую часть. Они вырабатывают иммуноглобулины и могут превращаться в клетки памяти.

Общее количество лейкоцитов 4000-9000 в мкл крови или 4-9*109 л.

В отличие от эритроцитов, численность лейкоцитов колеблется в зависимости от функционального состояния организма. Понижение содержания лейкоцитов называется лейкопенией, повышение - лейкоцитозом. Небольшой физиологический лейкоцитоз наблюдается при физической и умственной работе, а также после еды. Чаще всего лейкоцитоз и лейкопения возникают при различных заболеваниях. Лейкоцитоз наблюдается при инфекционных, паразитарных и воспалительных заболеваниях, болезнях крови лейкозах. В последнем случае лейкоциты являются малодифференцированными и не могут выполнять свои функции. Лейкопения возникает при нарушениях кроветворения, вызванных действием ионизирующих излучений (лучевая болезнь), токсических веществ, лекарственных средств, а также при тяжелом сепсисе. Больше всего уменьшается содержание нейтрофилов.

Процентное содержание лейкоцитов в периферической крови называется лейкоцитарной формулой, сдвиги которой в разные стороны свидетельствуют о патологических процессах, протекающих в организме. Различают сдвиг вправо – понижение функции красного костного мозга, сопровождающееся увеличением количества старых форм нейтрофильных лейкоцитов. Сдвиг влево является следствием усиления функций красного костного мозга, в крови увеличивается количество молодых форм лейкоцитов.

 

  1. Эритроциты, их функции в организме. Свойства эритроцитов (СОЭ, ОРЭ, гемолиз). Клинико-физиологическая оценка эритроцитов.

Эритроциты– красные кровяные тельца, содержащие дыхательный пигмент – гемоглобин. Эти безъядерные клетки образуются в красном костном мозге, а разрушаются в селезенке. У мужчин в норме содержится 4,5–5,5 × 1012/л, а у женщин – 3,7–4,7 × 1012/л. Однако количество форменных элементов крови изменчиво (их увеличение называется эритроцитозом, а при уменьшение – эритропенией). В зависимости от размеров делятся на нормоциты (6-8 микрон), микроциты (менее 6), макроциты (8-10), мегалоциты (более 10).

Функции эритроцитов:

1. дыхательная (связана с наличием гемоглобина и бикарбоната калия, за счет которых осуществляется перенос дыхательных газов);

2. питательная (связана со способностью мембраны клеток адсорбировать аминокислоты и липиды, которые с током крови транспортируются от кишечника к тканям);

3. ферментативная (обусловлена присутствием на мембране карбоангидразы, метгемоглобинредуктазы, глютатионредуктазы, пероксидазы, истинной холинэстеразы);

4. защитная (осуществляется в результате оседания токсинов микробов и антител, а также за счет присутствия факторов свертывания крови и фибринолиза);

5. буферная.

Ско́рость оседа́ния эритроци́тов (СОЭ) — неспецифический лабораторный показатель крови, отражающий соотношение фракций белков плазмы; изменение СОЭ может служить косвенным признаком текущего воспалительного или иного патологического процесса. Главными из них являются качественные и количественные изменения белков плазмы крови. Увеличение содержания крупнодисперсных белков (глобулинов, фибриногена) ведет к повышению СОЭ, уменьшение их содержания, увеличение содержания мелкодисперсных белков (альбуминов) - к ее снижению. Помимо различных диспротеинемий, на СОЭ влияют такие факторы, как соотношение холестерина и лецитина в плазме крови, содержание желчных пигментов и желчных кислот в крови, вязкость крови, кислотно-щелочное равновесие плазмы крови, физико-химические свойства эритроцитов: их число, величина, насыщенность гемоглобином.

Под осмотической резистентностью эритроцитов понимается устойчивость эритроцитов по отношению к гипотоническим растворам натрия хлорида.

-Минимальная резистентность эритроцитов определяется максималь­ной концентрацией гипотонического раствора натрия хлорида (в серии растворов с постепенно уменьшающейся концентрацией), при которой начинается разрушение наименее устойчивых эритроцитов, находящихся в растворе в течение 3 ч.

-Максимальная резистентность эритроцитов определяется максималь­ной концентрацией гипотонического раствора натрия хлорида, вызываю­щего в течение 3 ч разрушение всех эритроцитов помещенной в этот раствор крови.

Гемолиз– это разрушение оболочки эритроцита и выход его содержимого в плазму.

Факторы, вызывающие гемолиз:

1. Физические факторы – сильное нагревание, замораживание, встряхивание ампул с кровью.

2. Химические факторы – кислоты, щелочи, коагулируют белки мембран, эфир, хлороформ, бензол. нитриты, анилин, сапонины- жирорастворители, действуют на фосфолипиды мембраны.

3. Физико-химические факторы – прежде всего, изменение осмотического давления.

4. Биологические факторы – старение эритроцитов, нарушение обмена белков и/или жиров, приводящие к нарушению структуры мембран, групповая несовместимость крови, аутоантитела к эритроцитам, гемолиз, вызываемый ядами змей, токсинами микробов.

Виды гемолиза:

- Внутриклеточный гемолиз – стареющие эритроциты разрушаются в ретикулоэндотелиальной ткани селезенки, печени, фагоцитируются макрофагами.

- Внутрисосудистый гемолиз – эритроциты способны гемолизироваться (разрушаться), находясь в циркулирующей крови. Физиологический гемолиз идет постоянно.

 

  1. Гемоглобин. Виды гемоглобина и его соединения с газами. Цветовой показатель. Клинико-физиологическая оценка гемоглобина.

Гемоглобин это кровяной пигмент (дающий окраску), хромопротеид (класс окрашенных белков).

Виды гемоглобина:

1. Гемоглобин А (Нв А) – гемоглобин взрослого.

2. Гемоглобин F (фетальный, Нв F) – гемоглобин плода, заменяется в течении первого года на Нв А.

3. Гемоглобин Р (примитивный, Нв Р) – обнаруживается в первые месяцы эмбриональной жизни.

4. Патологические виды гемоглобина, (например - Нв S). Нв S наблюдается при серповидной анемии.

Функции гемоглобина:

1. Транспорт дыхательных газов. В основном это транспорт кислорода. Малая часть углекислого газа транспортируется с Нв.

2. Буферная система гемоглобина. Гемоглобин принимает участие в поддержании рН на постоянном уровне.

Соединения гемоглобина:

1. Оксигемоглобин – соединение Нв с кислородом.

2. Карбогемоглобин – соединение Нв с углекислым газом (СО2).

3. Карбоксигемоглобин – соединение Нв с угарным газом (СО).

4. Метгемоглобин – соединение Нв с кислородом. Это соединение образуется в присутствии сильных окислителей и при этом железо (Fе) изменяет свою валентность - становится 3-х валентным.


Дата добавления: 2018-05-02; просмотров: 820; Мы поможем в написании вашей работы!

Поделиться с друзьями:






Мы поможем в написании ваших работ!