Классификацтя уровней. Молекулярный, клеточный, тканевый уровни и органный уровни.



Многообразие жизни

Живые организмы, имеющие клеточное строение, подразделяются на две группы: 1) прокариоты (отсутствует структурно оформленное ядро), 2) эукариоты (имеется структурно оформленное ядро). К прокариотам относятся бактерии, к эукариотам — растения, животные, грибы. Кроме выше перечисленных, существует группа организмов, не имеющих клеточного строения, — вирусы, которые могут размножаться, только паразитируя или в прокариотических, или в эукариотических клетках.

Первыми на нашей планете появились безъядерные клетки. Большинством ученых принимается, что ядерные организмы появились в результате симбиоза древних архебактерий с синезелеными водорослями и бактериями-окислителями (теория симбиогенеза).


Давайте разберемся, что такое система. Система – это упорядоченное целое, которое состоит из частей, взаимосвязанных между собой.
Биологические системы организованны в зависимости от иерархии, которую невозможно нарушить, так как все внутри системы целостно. Если мы сравним системы различных уровней, то сможем заметить много общего между ними или выделить особые черты каждого уровня системы.
Принято выделять разные уровни биосистем и каждый из них характеризуется свойствами, которых нет на нижележащих уровнях. Дети, давайте внимательно посмотрим на рисунок 1. Какие уровни организации живой материи выделяют в биологии?

Рис. 1 Уровни организации живой материи
Биогеоценотический уровень выделяется своей спецификой, которая свзязана с его внутренними компонентами и круговоротом веществ, а биосферный уровень выделяется замкнутостью круговоротов веществ..

Рис. 2 Что мы знаем об уровнях организации всего живого на Земле?
1.Молекулярный уровень.

Рис. 3 Молекулы – основа молекулярного уровня
Химические вещества, нуклеиновые кислоты, белки, углеводы, липиды являються самыми
мелкими единицами этого уровня организации жизни. На рисунке 3 вы можете увидеть мельчайшие частицы, которые являются основой этого уровня организации живой материи.
Здесь мы видим проявление таких важнейших процессов природы, как передача через ДНК наследственной информации, превращение энергии и биосинтез. Основная стратегия жизни этого уровня в том, что живое вещество способно создавать живое, может кодировать данные, которые были приобретены в изменчивых условиях среды.
2.Клеточный уровень.

Рис. 4 Клетки – основа клеточного уровня
На этом уровне главными элементами являются различные органеллы. На рисунке 4 вы можете увидеть клетки и их органеллы, которые являются основой этого уровня организации живой материи.
Основными процессами этого уровня становятся способность к самовоспроизведению, включение большинства химических элементов в состав клетки, регулирование химических реакций, запас и потребление энергии. Стратегия жизни выражена в том, что живые системы включают в свой состав химические элементы Земли и энергию Солнца.
3.Тканевый уровень.
Что такое ткань? Ткань – это совокупность клеточных элементов разных типов клеток и межклеточного вещества, которая выполняет отдельную специфическую функцию в организме.

4.Органный уровень.
Органом называют совокупность уже тканей, связанных между собой тем, что выполняют общин функции и имеют свое определенное место в организме.


Продолжим знакомство с уровнями живой материи.
5.Организменный уровень характерен для одноклеточных и многоклеточных биосистем(растениям, грибам, животным, человеку и различным микроорганизмам). На рисунке 5 вы можете увидеть организмы, которые присущи этому уровню организации.

Рис. 5 Организменный уровень и пищевые цепи
На этом уровне живые организмы имеют такие свойства: питание, дыхание, выделение, раздражимость, рост и развитие, размножение, поведение, продолжительность жизни, взаимоотношения с окружающей средой. Все вышеперечисленное в целом дает характеристику как целостной саморегулирующейся биосистеме. Здесь стратегия жизни состоит в том, что организм стремится выжить в любых изменяющихся условиях среды.

6. Популяционно-видовой уровень


Рис. 6Популяционно-видовой уровень
Популяционно-видовой уровень организовывает особи, родственные между собой п популяции. Затем популяций группируются в виды и возникают новые свойства. На рисунке 6 вы можете увидеть популяции организмов, которые присущи этому уровню организации.
Основными свойствами этого уровня мы можем назвать рождаемость, смертность, выживание, структура (половая, возрастная, экологическая), плотность, численность, функционирование в природе. Стратегией популяционно-видового уровня есть болееполное использование возможностей природной среды обитания, в стремлении к возможно более длительному существованию, в сохранении свойств вида и самостоятельном развитии.
7.Биогеоценотический (экосистемный) уровеньхарактеризуется тем, что популяции различных видов становятся основными структурными элементами. В таблице на рисунке 7 вы можете увидеть строение этого уровня организации.

Рис. 7 Экосистемный уровень
Здесь мы можем выделить массу свойств присущих популяциям видов. К ним относятся:
пищевые цепи и сети, структура экосистемы, видовой и количественный состав ее населения, трофические урони, типы биотических связей, продуктивность, энергетика, устойчивость.
Свойства живых организмов можно увидеть в круговороте веществ и потоке энергии, автономности, открытости системы, сезонных изменениях, саморегулировании и устойчивости. Активное использование всего многообразия природы и создание благоприятных условий развития и процветания жизни во всем ее многообразии, все это становится главной стратегией этого уровня.
8.Биосферный уровень.
Данный уровень является самым высоким иерархическим уровнем любой биосистемы. Структурные единицы этого уровня такие:
- биогеоценозы (экосистемы);
- середа, окружающая эти системы. К ней относится сама оболочка Земли (атмосфера, гидросфера, почва, солнечная радиация) и антропогенное воздействие.
.

Рис. 8 Биосферный уровень
Для этого уровня организации характерны взаимодействие живых и неживих организмов планеты; биологический круговорот веществ, потоки энергии с геохимическими циклами; человеческая хозяйственная и этнокультурная деятельность. Главной задачей на данном уровне является общее стремление установить стабильность и непоколебимость биосферы, которая является наибольшей экосистемой планеты Земля.

https://studopedia.ru/3_47428_organizmenniy-populyatsionno-vidovoy-ekosistemniy-i-biosferniy-urovni-organizatsii-zhivoy-materii.html

Клеточная теория

Клетки – это структурные единицы организмов. Впервые этот термин употребил Роберт Гук в 1665 году. К XIX веку усилиями многих учёных (особенно Маттиаса Шлейдена и Теодора Шванна) сложилась клеточная теория. Её основными положениями были следующие утверждения:

· клетка – основная единица строения и развития всех живых организмов;

· клетки всех организмов сходны по своему строению, химическому составу, основным проявлениям жизнедеятельности;

· каждая новая клетка образуется в результате деления исходной (материнской) клетки;

· в многоклеточных организмах клетки специализированы по выполняемой ими функции и образуют ткани. Из тканей состоят органы, которые тесно связаны между собой и подчинены системам регуляции.

Практически все ткани многоклеточных организмов состоят из клеток. С другой стороны, слизевики состоят из неразделённой перегородками клеточной массы со множеством ядер. Сходным образом устроена и сердечная мышца животных. Ряд структур организма (раковины, жемчужины, минеральная основа костей) образованы не клетками, а продуктами их секреции.

Мелкие организмы могут состоять всего лишь из сотен клеток. Организм человека включает в себя 1014 клеток. Самая маленькая из известных сейчас клеток имеет размер 0,2 мкм, самая большая – неоплодотворенное яйцо эпиорниса – весит около 3,5 кг. Типичные размеры растительных и животных клеток составляют от 5 до 20 мкм. При этом между размерами организмов и размерами их клеток прямой зависимости обычно нет.

70–80 % массы клетки – это вода.

Для того, чтобы поддерживать в себе необходимую концентрацию веществ, клетка должна быть физически отделена от своего окружения. Вместе с тем, жизнедеятельность организма предполагает интенсивный обмен веществ между клетками. Роль барьера между клетками играет плазматическая мембрана.

Внутреннее строение клетки долгое время было загадкой для ученых; считалось, что мембрана ограничивает протоплазму – некую жидкость, в которой и происходят все биохимические процессы. Благодаря электронной микроскопии тайну протоплазмы удалось раскрыть, и сейчас известно, что внутри клетки имеются цитоплазма, в которой присутствуют различные органоиды, и генетический материал в виде ДНК, собранный, в основном, в ядре (у эукариот).

Строение клетки является одним из важных принципов классификации организмов. В последующих параграфах мы сначала рассмотрим структуры, общие для растительных и животных клеток, затем характерные особенности клеток растений и доядерных организмов. Закончится этот раздел рассмотрением принципов деления клетки.

Изучением клеток занимается цитология.

https://studopedia.ru/3_47429_kletochnaya-teoriya.html

Оболочка клетки

Клеточная мембрана – это оболочка клетки, выполняющая следующие функции:

· разделение содержимого клетки и внешней среды;

· регуляция обмена веществ между клеткой и средой;

· место протекания некоторых биохимических реакций (в том числе фотосинтеза, окислительного фосфорилирования);

· объединение клеток в ткани.

Оболочки делятся на плазматические (клеточные мембраны) и наружние. Важнейшее свойство плазматической мембраны – полупроницаемость, то есть способность пропускать только определённые вещества. Через неё медленно диффундируют глюкоза, аминокислоты, жирные кислоты и ионы, причём сами мембраны могут активно регулировать процесс диффузии.

По современным данным, плазматические мембраны – это липопротеиновые структуры. Липиды спонтанно образуют бислой, а мембранные белки «плавают» в нём, словно острова в океане. В мембранах присутствуют несколько тысяч различных белков: структурные, переносчики, ферменты и другие. Предполагают, что между белковыми молекулами имеются поры, сквозь которые могут проходить гидрофильные вещества (непосредственному их проникновению в клетку мешает липидный бислой). К некоторым молекулам на поверхности мембраны подсоединены гликозильные группы, которые участвуют в процессе распознавания клеток при образовании тканей.

Разные типы мембран отличаются по своей толщине (обычно она составляет от 5 до 10 нм). По консистенции липидный бислой напоминает оливковое масло. В зависимости от внешних условий (регулятором является холестерол) структура бислоя может изменяться так, что он становится более жидким (от этого зависит активность мембран).

Важной проблемой является транспорт веществ через плазматические мембраны. Он необходим для доставки питательных веществ в клетку, вывода токсичных отходов, создания градиентов для поддержания нервной и мышечной активности. Существуют следующие механизмы транспорта веществ через мембрану:

· диффузия (газы, жирорастворимые молекулы проникают прямо через плазматическую мембрану); при облегчённой диффузии растворимое в воде вещество проходит через мембрану по особому каналу, создаваемому какой-либо специфической молекулой;

· осмос (диффузия воды через полунепроницаемые мембраны);

· активный транспорт (перенос молекул из области с меньшей концентрацией в область с большей, например, посредством специальных транспортных белков, требует затраты энергии АТФ);

· при эндоцитозе мембрана образует впячивания, которые затем трансформируются в пузырьки или вакуоли. Различают фагоцитоз – поглощение твёрдых частиц (например, лейкоцитами крови) – и пиноцитоз – поглощение жидкостей;

· экзоцитоз – процесс, обратный эндоцитозу; из клеток выводятся непереварившиеся остатки твёрдых частиц и жидкий секрет.

Первые два процесса в отличие от остальных не требуют дополнительной энергии.

Над плазматической мембраной клетки могут располагаться надмембранные структуры. Их строение является влажным классификационным признаком. У животных это гликокаликс (белково-углеводный комплекс), у растений, грибов и бактерий – клеточная стенка. В состав клеточной стенки растений входит целлюлоза, грибов – хитин, бактерий – белково-полисахаридный комплекс муреин.

https://studopedia.ru/3_47430_obolochka-kletki.html

Цитоплазма и её органоиды

Ядро

Ядро имеется в клетках всех эукариот за исключением эритроцитов млекопитающих. У некоторых простейших имеются два ядра, но как правило, клетка содержит только одно ядро. Ядро обычно принимает форму шара или яйца; по размерам (10–20 мкм) оно является самой крупной из органелл.

Ядро отграничено от цитоплазмы ядерной оболочкой, которая состоит из двух мембран: наружной и внутренней, имеющих такое же строение, как и плазматическая мембрана. Между ними находится узкое пространство, заполненное полужидким веществом. Через множество пор в ядерной оболочке осуществляется обмен веществ между ядром и цитоплазмой (в частности, выход и-РНК в цитоплазму). Внешняя мембрана часто бывает усеяна рибосомами, синтезирующими белок.

Под ядерной оболочкой находится кариоплазма (ядерный сок), в которую поступают вещества из цитоплазмы. Кариоплазма содержит хроматин – вещество, несущее ДНК, и ядрышки. Ядрышко – это округлая структура внутри ядра, в которой происходит формирование рибосом.

Совокупность хромосом, содержащихся в хроматине, называют хромосомным набором. Число хромосом в соматических клетках диплоидное (2n), в отличие от половых клеток, имеющих гаплоидный набор хромосом (n).

Важнейшей функцией ядра является сохранение генетической информации. При делении клетки ядро также делится надвое, а находящаяся в нём ДНК копируется (реплицируется). Благодаря этому у всех дочерних клеток также имеются ядра.

Цитоплазма представляет собой водянистое вещество – цитозоль (90 % воды), в котором располагаются различные органеллы, а также питательные вещества (в виде истинных и коллоидных растворов) и нерастворимые отходы метаболических процессов. В цитозоле протекает гликолиз, синтез жирных кислот, нуклеотидов и других веществ. Цитоплазма является динамической структурой. Органеллы движутся, а иногда заметен и циклоз – активное движение, в которое вовлекается вся протоплазма.

Перечислим основные органеллы, характерные и для клеток животных, и для клеток растений.

Митохондрии иногда называют «клеточными электростанциями». Это спиральные, округлые, вытянутые или разветвлённые органеллы, длина которых изменяется в пределах 1,5–10 мкм, а ширина – 0,25–1 мкм. Митохондрии могут изменять свою форму и перемещаться в те области клетки, где потребность в них наиболее высока. В клетке содержится до тысячи митохондрий, причём это количество сильно зависит от активности клетки. Каждая митохондрия окружена двумя мембранами, внутри которых содержатся РНК, белки и митохондриальная ДНК, участвующая в синтезе митохондрий наряду с ядерной ДНК. Внутренняя мембрана сложена в складки, называемые кристами. Возможно, митохондрии некогда были свободнодвижущимися бактериями, которые, случайно проникнув в клетку, вступили с хозяином в симбиоз. Важнейшей функцией митохондрий является синтез АТФ, происходящий за счёт окисления органических веществ.

Эндоплазматическая сеть – это сеть мембран, пронизывающих цитоплазму эукариотических клеток. Её можно наблюдать только при помощи электронного микроскопа. Эндоплазматическая сеть связывает органеллы между собой, по ней происходит транспорт питательных веществ. Гладкая ЭПС имеет вид трубочек, стенки которых представляют собой мембраны, сходные по своей структуре с плазматической мембраной. В ней осуществляется синтез липидов и углеводов. На мембранах каналов и полостей гранулярной ЭПС расположено множество рибосом; данный тип сети участвует в синтезе белка.

Рибосомы – мелкие (15–20 нм в диаметре) органеллы, состоящие из р-РНК и полипептидов. Важнейшая функция рибосом – синтез белка. Их количество в клетке весьма велико: тысячи и десятки тысяч. Рибосомы могут быть связаны с эндоплазматической сетью или находиться в свободном состоянии. В процессе синтеза обычно одновременно участвуют множество рибосом, объединённых в цепи, называемые полирибосомами.

Аппарат Гольджи представляет собой стопку мембранных мешочков (цистерн) и связанную с ними систему пузырьков. На наружной, вогнутой стороне стопки из пузырьков (отпочковывающихся, по-видимому, от гладкой эндоплазматической сети) постоянно образуются новые цистерны, на внутренней стороне цистерны превращаются обратно в пузырьки. Основной функцией аппарата Гольджи является транспорт веществ в цитоплазму и внеклеточную среду, а также синтез жиров и углеводов, в частности, гликопротеина муцина, образующего слизь, а также воска, камеди и растительного клея. Аппарат Гольджи участвует в росте и обновлении плазматической мембраны и в формировании лизосом.

Лизосомы представляют собой мембранные мешочки, наполненные пищеварительными ферментами. Особенно много лизосом в животных клетках, здесь их размер составляет десятые доли микрометра. Лизосомы расщепляют питательные вещества, переваривают попавшие в клетку бактерии, выделяют ферменты, удаляют путём переваривания ненужные части клеток. Лизосомы также являются «средствами самоубийства» клетки: в некоторых случаях (например, при отмирании хвоста у головастика) содержимое лизосом выбрасывается в клетку, и она погибает.

Пероксисомы (микротельца) имеют округлые очертания и окружены мембраной. Их размер не превышает 1,5 мкм. Пероксисомы связаны с эндоплазматической сетью и содержат ряд важных ферментов, в частности, каталазу, участвующую в разложении перекиси водорода.

Почти во всех эукариотических клетках имеются полые цилиндрические органеллы диаметром около 25 нм, называющиеся микротрубочками. В длину они могут достигать нескольких микрометров. Стенки микротрубочек сложены из белка тубулина. В клетках животных и низших растений встречаются центриоли – мелкие полые цилиндры длиной в десятые доли микрометра, построенные из 27 микротрубочек. Во время деления клетки они образуют веретено, вдоль которого выстраиваются хромосомы. Центриолям по структурам идентичны базальные тельца, содержащиеся в жгутиках и ресничках. Эти органеллы вызывают биение жгутиков. Другая функция микротрубочек – транспорт питательных веществ. Микротрубочки представляют собой достаточно жёсткие структуры и поддерживают форму клетки, образуя своеобразный цитоскелет. С опорой и движением связана и ещё одна форма органелл – микрофиламенты – тонкие белковые нити диаметром 5–7 нм.

Типы клеточной организации

Выделяют два типа клеточной организации: 1) прокариотический, 2) эукариотический. Общим для клеток обоих типов является то, что клетки ограничены оболочкой, внутреннее содержимое представлено цитоплазмой. В цитоплазме находятся органоиды и включения. Органоиды — постоянные, обязательно присутствующие, компоненты клетки, выполняющие специфические функции. Органоиды могут быть ограничены одной или двумя мембранами (мембранные органоиды) или не ограничены мембранами (немембранные органоиды). Включения — непостоянные компоненты клетки, представляющие собой отложения веществ, временно выведенных из обмена или конечных его продуктов.

В таблице перечислены основные различия между прокариотическими и эукариотическими клетками.

Признак Прокариотические клетки Эукариотические клетки
Структурно оформленное ядро Отсутствует Имеется
Генетический материал Кольцевые не связанные с белками ДНК Линейные связанные с белками ядерные ДНК и кольцевые не связанные с белками ДНК митохондрий и пластид
Мембранные органоиды Отсутствуют Имеются
Рибосомы 70-S типа 80-S типа (в митохондриях и пластидах — 70-S типа)
Жгутики Не ограничены мембраной Ограничены мембраной, внутри микротрубочки: 1 пара в центре и 9 пар по периферии
Основной компонент клеточной стенки Муреин У растений — целлюлоза, у грибов — хитин

К прокариотам относятся бактерии, к эукариотам — растения, грибы, животные. Организмы могут состоять из одной клетки (прокариоты и одноклеточные эукариоты) и из множества клеток (многоклеточные эукариоты). У многоклеточных происходит специализация и дифференциация клеток, а также образование тканей и органов.

Методы изучения клеток: 1) световая микроскопия, 2) электронная микроскопия, 3) дифференциальное ультрацентрифугирование, 4) рентгеноструктурный анализ, 5) хроматография, 6) электрофорез, 7) микрохирургия, 8) метод культуры клеток и др.

Эукариотическая клетка: цитоплазма, клеточная оболочка, строение и функции клеточных мембран

https://studopedia.ru/3_47431_tsitoplazma-i-ee-organoidi.html

Клеточные оболочки

Цитоплазма

Цитоплазма — обязательная часть клетки, заключенная между плазматической мембраной и ядром; подразделяется на гиалоплазму (основное вещество цитоплазмы), органоиды (постоянные компоненты цитоплазмы) и включения (временные компоненты цитоплазмы). Химический состав цитоплазмы: основу составляет вода (60–90% всей массы цитоплазмы), различные органические и неорганические соединения. Цитоплазма имеет щелочную реакцию. Характерная особенность цитоплазмы эукариотической клетки — постоянное движение (циклоз). Оно обнаруживается, прежде всего, по перемещению органоидов клетки, например хлоропластов. Если движение цитоплазмы прекращается, клетка погибает, так как, только находясь в постоянном движении, она может выполнять свои функции.

Гиалоплазма (цитозоль) представляет собой бесцветный, слизистый, густой и прозрачный коллоидный раствор. Именно в ней протекают все процессы обмена веществ, она обеспечивает взаимосвязь ядра и всех органоидов. В зависимости от преобладания в гиалоплазме жидкой части или крупных молекул, различают две формы гиалоплазмы: золь — более жидкая гиалоплазма и гель — более густая гиалоплазма. Между ними возможны взаимопереходы: гель превращается в золь и наоборот.

Функции цитоплазмы:

объединение всех компонентов клетки в единую систему,

среда для прохождения многих биохимических и физиологических процессов,

среда для существования и функционирования органоидов.

Клеточные оболочки ограничивают эукариотические клетки. В каждой клеточной оболочке можно выделить как минимум два слоя. Внутренний слой прилегает к цитоплазме и представлен плазматической мембраной (синонимы — плазмалемма, клеточная мембрана, цитоплазматическая мембрана), над которой формируется наружный слой. В животной клетке он тонкий и называется гликокаликсом (образован гликопротеинами, гликолипидами, липопротеинами), в растительной клетке — толстый, называется клеточной стенкой (образован целлюлозой).

Строение мембран

Все биологические мембраны имеют общие структурные особенности и свойства. В настоящее время общепринята жидкостно-мозаичная модель строения мембраны. Основу мембраны составляет липидный бислой, образованный в основном фосфолипидами. Фосфолипиды — триглицериды, у которых один остаток жирной кислоты замещен на остаток фосфорной кислоты; участок молекулы, в котором находится остаток фосфорной кислоты, называют гидрофильной головкой, участки, в которых находятся остатки жирных кислот — гидрофобными хвостами. В мембране фосфолипиды располагаются строго упорядоченно: гидрофобные хвосты молекул обращены друг к другу, а гидрофильные головки — наружу, к воде.

Помимо липидов в состав мембраны входят белки (в среднем ≈ 60%). Они определяют большинство специфических функций мембраны (транспорт определенных молекул, катализ реакций, получение и преобразование сигналов из окружающей среды и др.). Различают: 1) периферические белки (расположены на наружной или внутренней поверхности липидного бислоя), 2) полуинтегральные белки (погружены в липидный бислой на различную глубину), 3) интегральные, или трансмембранные, белки (пронизывают мембрану насквозь, контактируя при этом и с наружной, и с внутренней средой клетки). Интегральные белки в ряде случаев называют каналообразующими, или канальными, так как их можно рассматривать как гидрофильные каналы, по которым в клетку проходят полярные молекулы (липидный компонент мембраны их бы не пропустил).

В состав мембраны могут входить углеводы (до 10%). Углеводный компонент мембран представлен олигосахаридными или полисахаридными цепями, связанными с молекулами белков (гликопротеины) или липидов (гликолипиды). В основном углеводы располагаются на наружной поверхности мембраны. Углеводы обеспечивают рецепторные функции мембраны. В животных клетках гликопротеины образуют надмембранный комплекс — гликокаликс, имеющий толщину несколько десятков нанометров. В нем располагаются многие рецепторы клетки, с его помощью происходит адгезия клеток.

Молекулы белков, углеводов и липидов подвижны, способны перемещаться в плоскости мембраны. Толщина плазматической мембраны — примерно 7,5 нм.

https://studopedia.ru/3_47432_kletochnie-obolochki.html

Функции мембран

Мембраны выполняют такие функции:

· отделение клеточного содержимого от внешней среды,

· регуляция обмена веществ между клеткой и средой,

· деление клетки на компартаменты («отсеки»),

· место локализации «ферментативных конвейеров»,

· обеспечение связи между клетками в тканях многоклеточных организмов (адгезия),

· распознавание сигналов.

Важнейшее свойство мембран — избирательная проницаемость, т.е. мембраны хорошо проницаемы для одних веществ или молекул и плохо проницаемы (или совсем непроницаемы) для других. Это свойство лежит в основе регуляторной функции мембран, обеспечивающей обмен веществ между клеткой и внешней средой. Процесс прохождения веществ через клеточную мембрану называют транспортом веществ. Различают: 1) пассивный транспорт — процесс прохождения веществ, идущий без затрат энергии; 2) активный транспорт — процесс прохождения веществ, идущий с затратами энергии.

При пассивном транспорте вещества перемещаются из области с более высокой концентрацией в область с более низкой, т.е. по градиенту концентрации. В любом растворе имеются молекулы растворителя и растворенного вещества. Процесс перемещения молекул растворенного вещества называют диффузией, перемещения молекул растворителя — осмосом. Если молекула заряжена, то на ее транспорт влияет и электрический градиент. Поэтому часто говорят об электрохимическом градиенте, объединяя оба градиента вместе. Скорость транспорта зависит от величины градиента.

Можно выделить следующие виды пассивного транспорта: 1) простая диффузия — транспорт веществ непосредственно через липидный бислой (кислород, углекислый газ); 2) диффузия через мембранные каналы — транспорт через каналообразующие белки (Na+, K+, Ca2+, Cl-); 3) облегченная диффузия — транспорт веществ с помощью специальных транспортных белков, каждый из которых отвечает за перемещение определенных молекул или групп родственных молекул (глюкоза, аминокислоты, нуклеотиды); 4) осмос — транспорт молекул воды (во всех биологических системах растворителем является именно вода).

Необходимость активного транспорта возникает тогда, когда нужно обеспечить перенос через мембрану молекул против электрохимического градиента. Этот транспорт осуществляется особыми белками-переносчиками, деятельность которых требует затрат энергии. Источником энергии служат молекулы АТФ. К активному транспорту относят: 1) Na+/К+-насос (натрий-калиевый насос), 2) эндоцитоз, 3) экзоцитоз.

Работа Na+/К+-насоса. Для нормального функционирования клетка должна поддерживать определенное соотношение ионов К+ и Na+ в цитоплазме и во внешней среде. Концентрация К+ внутри клетки должна быть значительно выше, чем за ее пределами, а Na+ — наоборот. Следует отметить, что Na+ и К+ могут свободно диффундировать через мембранные поры. Na+/К+-насос противодействует выравниванию концентраций этих ионов и активно перекачивает Na+ из клетки, а K+ в клетку. Na+/К+-насос представляет собой трансмембранный белок, способный к конформационным изменениям, вследствие чего он может присоединять как K+, так и Na+. Цикл работы Na+/К+-насоса можно разделить на следующие фазы: 1) присоединение Na+ с внутренней стороны мембраны, 2) фосфорилирование белка-насоса, 3) высвобождение Na+ во внеклеточном пространстве, 4) присоединение K+ с внешней стороны мембраны, 5) дефосфорилирование белка-насоса, 6) высвобождение K+ во внутриклеточном пространстве. На работу натрий-калиевого насоса тратится почти треть всей энергии, необходимой для жизнедеятельности клетки. За один цикл работы насос выкачивает из клетки 3Na+ и закачивает 2К+.

Эндоцитоз — процесс поглощения клеткой крупных частиц и макромолекул. Различают два типа эндоцитоза: 1) фагоцитоз — захват и поглощение крупных частиц (клеток, частей клеток, макромолекул) и 2) пиноцитоз — захват и поглощение жидкого материала (раствор, коллоидный раствор, суспензия). Явление фагоцитоза открыто И.И. Мечниковым в 1882 г. При эндоцитозе плазматическая мембрана образует впячивание, края ее сливаются, и происходит отшнуровывание в цитоплазму структур, отграниченных от цитоплазмы одиночной мембраной. К фагоцитозу способны многие простейшие, некоторые лейкоциты. Пиноцитоз наблюдается в эпителиальных клетках кишечника, в эндотелии кровеносных капилляров.

Экзоцитоз — процесс, обратный эндоцитозу: выведение различных веществ из клетки. При экзоцитозе мембрана пузырька сливается с наружной цитоплазматической мембраной, содержимое везикулы выводится за пределы клетки, а ее мембрана включается в состав наружной цитоплазматической мембраны. Таким способом из клеток желез внутренней секреции выводятся гормоны, у простейших — непереваренные остатки пищи.

Эукариотическая клетка: строение и функции органоидов

Органоиды — постоянные, обязательно присутствующие, компоненты клетки, выполняющие специфические функции.

https://studopedia.ru/3_47433_funktsii-membran.html


Дата добавления: 2018-05-02; просмотров: 1358; Мы поможем в написании вашей работы!

Поделиться с друзьями:






Мы поможем в написании ваших работ!