Молекулярно-генетические методы



Значительные успехи в области молекулярно-генетического исследования психики человека стали возможны благодаря появлению в 70-х года такого экспериментального инструмента, как рестрикционные эндонуклеазы. Набор специальных ферментов обладает способностью вступать в реакцию с определёнными участками в ДНК, которые называют "сайты узнавания", и разрезать двухцепочечную молекулу ДНК так, что одна из цепей ДНК оказывается на несколько нуклеотидов длиннее другой. Эти нуклеотиды, называемые также "липкими концами", могут спариваться с комплементарными им нуклеотидами. Вследствие этого ДНК разных организмов могут объединяться, образуя так называемые рекомбинантные молекулы. Это свойство используют для размножения специфической, интересующей исследователя ДНК. В 1971 году на Пражской конференции был представлен метод дифференциальной окраски хромосом, благодаря которой каждая хромосома приобретает свой неповторимый рисунок, что помогает точной дифференциации хромосом (рис. 4.6).

Математические методы

К ним относятся методы математической статистики — дисперсионный анализ, анализ корреляций между различными группами людей, анализ достоверности различий между группами.

http://pidruchniki.com/1253121263241/psihologiya/drugie_metody

ГЕНЕТИКА ПОПУЛЯЦИЙ

Понятие популяции в психогенетике

Виды живых существ, населяющие землю, образуют сообщества, то есть пространственно-временные объединения. Одной из разновидностей сообществ является популяция — сообщество одного вида, занимающее определённую территорию. Законы распространения генов среди населения изучает популяционная генетика.

Генетическая характеристика популяций позволяет установить генофонд популяции, факторы и закономерности, обусловливающие сохранение генофонда или его изменение в поколениях. Изучение особенностей распространения психических свойств в разных популяциях даёт возможность прогнозировать распространённость этих свойств в последующих поколениях. Генетическая характеристика популяции начинается с оценки распространённости изучаемого свойства или признака среди населения. По данным о распространённости признака определяются частоты генов и соответствующих генотипов в популяции.

Основными характеристиками генетической популяции являются:

• принадлежность особей одному виду,

• пространственно-временное сходство,

• сходство экологических потребностей,

• способность случайно и свободно скрещиваться между собой — панмиксия. Панмиксия может нарушаться, если образование пар происходит неслучайно. Например, в человеческих популяциях имеется тенденция к неслучайному подбору супружеских пар по росту, интеллекту, интересам и др. Такой неслучайный подбор пар называется ассортативность.

Замкнутая географически или по религиозным соображениям популяция, в которой не происходит обмена особями с другими популяциями, называется изолятом.

Закон Харди-Вайнберга

Зависимости между частотами аллелей и частотами генотипов в поколениях впервые были описаны в 1908 году независимо друг от друга английским математиком Г. Харди и немецким врачом В. Вайнбергом (рис. 5.1). Этот закон определяет взаимоотношения между частотами аллелей в исходной популяции и частотами генотипов в следующем поколении.

Рисунок 5.1. Фотографии и биографические данные Г. Харди и В. Вайнберга

Закон Харди-Вайнберга рассматривает популяцию идеальную. На самом же деле реальная популяция будет не в полной мере соответствовать данному закону, так как в ней происходят такие процессы, влияющие на изменение частот аллелей в популяции, как мутации, миграции, дрейф генов, отбор, а в человеческих популяциях и ассортативность.

Рассмотрим отдельно указанные факторы.

Мутации и виды мутаций

Мутации— внезапные и устойчивые изменения генотипа. Термин "мутация" предложил в 1901 году голландец Гуго де Фриз. Мутации служат основным источником генетической изменчивости, но их частота мала. Для того чтобы мутации привели к значительному изменению частот аллелей, потребуется очень много времени.

Можно классифицировать мутации по различным основаниям. Так, мутации бывают:

• спонтанные и индуцированные, т.е. возникшие под влиянием мутагенов — а) физических излучений; б) химических веществ; в) биологических — влияние вирусов, например, вируса краснухи;

• генные, цитоплазмические, хромосомные и геномные (изменения числа хромосом);

• в зависимости от влияния на жизнеспособность — отрицательные, нейтральные и положительные (роль мутации выявлена в устойчивости к таким заболеваниям, как ВИЧ и серповидноклетчатая анемия);

• в зависимости от типа наследования — доминантные и рецессивные;

• соматические или репродуктивные (гаметные).

Гаметные мутации — мутации, происходящие в половых клетках, например, рак груди. По прогнозу у женщин, родившихся после 1980 года, риск заболеть до 80 лет составляет 12%, то есть заболеет каждая восьмая. Мутированный ген на 13 и 17 хромосоме обусловливает от 5 до 10% случаев рака груди. Ген передаётся по менделевским законам.

Ген ВЯСЛ1, ответственный за генетические формы рака груди, теперь можно назвать геном Анджелины Джоли, поскольку широкой общественности он стал известен благодаря её недавним действиям и публичным заявлениям. Этот ген и его роль в развитии рака известны с середины 90-х годов прошлого века. Причём А. Джоли далеко не первая, кому пришло в голову провести превентивную мастэктомию. Есть данные, что в Великобритании на протяжении 2010-2011 гг. провели около 1500 таких операций именно с превентивной целью.

Надо подчеркнуть, что чисто генетический рак, то есть такой, который возник только из-за унаследованного конкретного "плохого" гена, встречается редко. Как уже говорилось, не больше 10% случаев рака груди и яичников являются наследственными, и за 50% из них отвечают гены ВЯСЛ. Частота мутантного аллеля гена ВЯСЛ1 составляет 0,06%, среди евреев ашкенази больше — 2,6%. Разработано несколько тестов, которые с помощью специальной компьютерной программы рассчитывают риск рака на основании анализа генов ВЯСЛ и индивидуальной информации. Для А. Джоли программа рассчитала наивысший риск рака груди — 86%.

Соматические — остальные 80% мутаций, связанных с возникновением рака груди, что происходят в соматических клетках.

Рассмотрим отдельно виды хромосомных и геномныхмутаций (рис. 5.2).

Рисунок 5.2. Хромосомные мутации

К хромосомным мутациямотносятся делении, дупликации, инверсии, транслокации:

• деления — потеря участка хромосомы;

• дупликация — удвоение;

• транслокация — перенос участка хромосомы на другую;

• инверсия — поворот на 180 градусов определённого участка хромосомы.

Геномные мутациихарактеризуются изменением числа хромосом. Геномные мутации описывают несколькими видами. У человека известны полиплоидия (в том числе тетраплоидия и триплоидия) и анеуплоидия (рис. 5.3).

Рисунок 5.3. Виды геномных мутаций

Полиплоидия— увеличение числа наборов хромосом, кратное гаплоидному (3п, 4п, 5п и т.д.). То есть число хромосом становится равным 69, 92 и т.д. Причины полиплоидии — двойное оплодотворение и отсутствие первого мейотического деления. У человека полиплоидия, а также большинство анеуплоидий приводят к формированию летальных исходов сразу после рождения или до рождения (спонтанные выкидыши).

Анеуплоидия— изменение (уменьшение — моносомияили увеличение — трисомия)числа хромосом в диплоидном наборе, то есть число хромосом, не кратное гаплоидному (2п+1, 2п-1 и т.д.). Число хромосом становится равным 45, 47, 48 и др. Механизмы возникновения анеуплоидий различны: нерасхождение хромосом (хромосомы отходят к одному полюсу, при этом на каждую гамету с одной лишней хромосомой приходится другая — без одной хромосомы) и "анафазное отставание" (в анафазе одна из передвигаемых хромосом отстаёт от всех других).

Трисомия— наличие трёх гомологичных хромосом в кариотипе (например, по 21-й паре, что приводит к развитию синдрома Дауна; по 18-й паре — синдрома Эдвардса; по 13-й паре — синдрома Патау).

Моносомия— наличие только одной из двух гомологичных хромосом. При моносомии по любой из аутосом нормальное развитие эмбриона невозможно. Единственная совместимая с жизнью моносомия у человека — по Х-хромосоме — приводит к развитию синдрома Шерешевского-Тёрнера (45, Х0).

Одним из факторов возникновения мутаций является инбридинг. Инбридинг— кровнородственные браки, например между двоюродными сибсами. В браках между генетическими родственниками повышается вероятность появления потомства с рецессивными признаками. Генетические последствия таких браков проиллюстрируем на примере ряда наследственных болезней в популяциях Европы и США. Например, среди белого населения США на кровнородственные браки проходится лишь 0,05 % от общего числа браков и в то же время 20% случаев альбинизма.

Однако не во всех популяциях последствия инбридинга отрицательны. У сельского населения Индии, Китая и Японии кровнородственные браки довольно часты, но отрицательные эффекты (число уродств, мертворождений) обнаружены не были. Скорее всего в этих странах, где кровнородственные браки разрешены культурой, в течение многих поколений происходило выщепление рецессивных гомозигот, которые обладали пониженной жизнестойкостью.

Миграция и дрейф генов

Миграциейназывается перемещение индивидов из одной популяции в другую с последующим образованием брачных связей между мигрантами и членами исходной популяции. Миграция ведёт к изменению генетического состава популяции, обусловленного поступлением новых генов. Например, распределение группы крови В в Европе является следствием движения монгол в западном направлении от материнской популяции в период между 6 и 15 веками. Поэтому в Европе частоту аллеля В последовательно снижается начиная от границ с Азией и заканчивая Испанией и Португалией. Обмен генами между популяциями может иметь ощутимые медицинские последствия. Так, до недавнего времени резус-конфликт практически не встречался в Китае, так как все китаянки резус-положительны.

Однако процессы миграции, переезд в Китай американцев, межрасовые браки ввели в китайские популяции резус-отрицательный аллель. И если в первом поколении у потомства американцев-мужчин и китаянок-женщин резус-конфликт не наблюдался, однако в последующих частота его встречаемости повысилась, так как появились резус-отрицательные женщины, которые выходили замуж за резус-положительных мужчин.

Вследствие ограниченного числа индивидов, образующих популяцию, возможны случайные изменения частот генов, которые называются дрейфом генов.В ряду поколений, если не действуют другие факторы, дрейф генов может привести к фиксации одного аллеля и исчезновению другого.

С. Райт экспериментально доказал, что в маленьких популяциях частота мутантного аллеля меняется быстро и случайным образом. Его опыт был прост: в пробирки с кормом он посадил по две самки и по два самца мух дрозофил, гетерозиготных по гену А (их генотип можно записать Аа). В этих искусственно созданных популяциях концентрация нормального (А) и мутационного (а) аллелей составила 50%. Через несколько поколений оказалось, что в некоторых популяциях все особи стали гомозиготными по мутантному аллелю (а), в других популяциях он был вовсе утрачен, и, наконец, часть популяций содержала как нормальный, так и мутантный аллель. Важно подчеркнуть, что, несмотря на снижение жизнеспособности мутантных особей и, следовательно, вопреки естественному отбору, в некоторых популяциях мутантный аллель полностью вытеснил нормальный. Это и есть результат случайного процесса — дрейфа генов.

Естественным отбором называется процесс избирательного воспроизводства потомства генетически разными индивидами в популяции. Естественный отбор проявляется в том, что особи с разными генотипами оставляют неодинаковое количество потомства, то есть вносят неодинаковый генетический вклад в следующее поколение.

Таким образом, закон Харди-Вайнберга — это закон популяционной генетики, гласящий, что в популяции бесконечно большого размера, в которой не действует отбор, не идёт мутационный процесс, отсутствует обмен особями с другими популяциями, не происходит дрейф генов, все скрещивания случайны, — частоты генотипов по какому-либо гену (в случае, если в популяции есть два аллеля этого гена) будут поддерживаться постоянными из поколения в поколение и соответствовать уравнению:

где Р — доля гомозигот по одному из аллелей; Р — частота этого аллеля;

¥^ — доля гомозигот по альтернативному аллелю; Я — частота соответствующего аллеля; — доля гетерозигот.

http://pidruchniki.com/1821011663242/psihologiya/genetika_populyatsiy

НАСЛЕДСТВЕННОСТЬ И ПАТОЛОГИЯ

Прежде всего, необходимо отметить, что термин "наследственные болезни" не тождественен термину "врождённые болезни". Так, врождённые болезни могут быть сформированы под влиянием различных негативных факторов среды, в том числе и внутриутробной.

Всю наследственную патологию можно разбить на 5 групп:

1) генные патологии;

2) хромосомные патологии;

3) болезни с наследственной предрасположенностью;

4) генетические болезни соматических клеток;

5) болезни несовместимости матери и плода.

Генные болезни могут быть моногенными (например, фенилкетонурия) и полигенными (шизофрения), наследоваться по рецессивному или доминантному принципу, быть обусловлены мутацией ядерной или цитоплазмической ДНК.


Дата добавления: 2018-05-02; просмотров: 658; Мы поможем в написании вашей работы!

Поделиться с друзьями:






Мы поможем в написании ваших работ!