Технологический (геологический) режим эксплуатации нефтяных, газовых и нагнетательных скважин. Ограничения режима эксплуатации скважины.



Под установленным технологическим режимом скважин следует понимать совокупность основных параметров ее работы, обеспечивающих получение предусмотренных технологическим проектным документом на данный период отборов нефти, жидкости и газа и соблюдение условий надежности эксплуатации. Технологический режим скважин обеспечивает регулирование процесса разработки и характеризуется следующими основными параметрами:

а) пластовым, забойным и устьевым давлениями;

б) дебитом жидкости, обводненностью и газовым фактором;

в) типоразмерами установленного эксплуатационного оборудования и режимами его работы (конструкция лифта, глубина подвески и диаметр насоса, производительность, число качаний, длина хода, развиваемый напор и др.).

6.3.2. Технологические режимы работы скважин составляются цехами по добыче нефти, исходя из утвержденных норм отбора нефти, жидкости и газа, и утверждаются главным геологом и главным инженером нефтегазодобывающего предприятия. Одновременно с технологическими режимами составляется и утверждается план геолого-технических мероприятий по обеспечению норм отбора из эксплуатационного объекта. Технологические режимы скважин устанавливаются ежемесячно или один раз в квартал в зависимости от стадии разработки.

6.3.3. Ответственность за соблюдением установленных режимов несут мастер и начальник цеха (промысла) по добыче нефти.

6.3.4. Контроль за выполнением установленных технологических режимов работы скважин осуществляется геологической и производственно-технической службами нефтегазодобывающих предприятий. В порядке надзора контроль осуществляют вышестоящие организации и органы Госгортехнадзора СССР.

6.3.5. Для наблюдения за режимом работы скважин устанавливаются контрольно-измерительная аппаратура и устройства для отбора устьевой пробы добываемой продукции. Обвязка скважин должна обеспечивать проведение комплекса исследований: индивидуальный замер дебита жидкости и газа, обводненности (эхометрирование, динамометрирование, спуск глубинных приборов и т.д.).

Пуск новых, необорудованных для индивидуального замера дебита и исследования скважин в эксплуатацию не разрешается.

6.3.6. Материалы по режимам работы скважин подлежат анализу и обобщению:

а) цех по добыче нефти (нефтепромысел) проводит оперативный анализ выполнения установленных режимов, намечает план мероприятий по их поддержанию, утверждаемый главным инженером и главным геологом нефтегазодобывающего предприятия;

б) нефтегазодобывающее управление обобщает результаты анализа режимов по объектам разработки, площадям, способам эксплуатации и др. и отражает их в ежегодных отчетах.

7 Показатели процесса разработки эксплуатационного объекта. Стадии процесса разработки месторождения.

   Объект разработки – один или несколько продуктивных пластов месторождения, выделенных по геолого-техническим условиям и экономическим соображениям для разбуривания и эксплуатации единой системой скважин.

При выделении объектов следует учитывать:

1. Геолого-физические свойства пород-коллекторов; 2. Физико-химические свойства нефти, воды и газа; 3. Фазовое состояние углеводородов и режим пластов;4. Технику и технологию эксплуатации скважин. Объекты разработки подразделяют на самостоятельные и возвратные. Возвратные объекты в отличие от самостоятельных предполагается разрабатывать скважинами, эксплуатирующими в первую очередь какой-то другой объект

Первая стадияосвоение эксплуатационного объекта - характеризуется:

- интенсивным ростом добычи нефти до максимально заданного уровня (прирост составляет примерно 1-2 % в год от балансовых запасов);

- быстрым увеличением действующего фонда скважин до 0,6-0,8 от максимального;

- резким снижением пластового давления;

- небольшой обводненностью продукции nв (обводненность продукции достигает 3-4 % при вязкости нефти не более 5 мПа·с и 35 % при повышенной вязкости);

Вторая стадияподдержание высокого уровня добычи нефти - характеризуется:

- более или менее стабильным высоким уровнем добычи нефти (максимальный темп добычи нефти находится в пределах 3-17 %) в течение 3-7 лет и более для месторождений с маловязкими нефтями и 1-2 года - при повышенной вязкости;

- ростом числа скважин, как правило, до максимума за счет резервного фонда;

- нарастанием обводненности продукции nв (ежегодный рост обводненности составляет 2-3% при малой вязкости нефти и 7% и более при повышенной вязкости, на конец стадии обводненность колеблется от нескольких до 65%);

- отключением небольшой части скважин из-за обводнения и переводом многих на механизированный способ добычи нефти;

- текущим коэффициентом нефтеотдачи, составляющим к концу стадии 30-50 %, а для месторождений с «пикой» добычи - 10-15%

Третья стадиязначительное снижение добычи нефти – характеризуется:

- снижением добычи нефти (в среднем на 10-20 % в год при маловязких нефтях и на 3-10 % при нефтях повышенной вязкости);

- темпом отбора нефти на конец стадии 1-2,5 %;

- уменьшением фонда скважин из-за отключения вследствие обводнения продукции, переводом практически всего фонда скважин на механизированный способ добычи;

- прогрессирующим обводнением продукции nв до 80-85 % при среднем росте обводненности 7-8 % в год, причем с большей интенсивностью для месторождений с нефтями повышенной вязкости;

- повышением текущих коэффициентов нефтеотдачи Кн на конец стадии до 50-60 % для месторождений с вязкостью нефти не более 5 мПа·с и до 20-30 % для месторождений с нефтями повышенной вязкости;

- суммарным отбором жидкости 0,5-1 объема от балансовых запасов нефти.

Эта стадия наиболее трудная и сложная для всего процесса разработки, ее главная задача - замедление темпа снижения добычи нефти. Продолжительность стадии зависит от продолжительности предыдущих стадий и составляет 5-10 и более лет. Определить границу между третьей и четвертой стадиями по изменению среднегодового темпа добычи нефти Тдн обычно трудно. Наиболее четко ее можно определить по точке перегиба кривой обводненности nв.

Совместно первую, вторую и третью стадии называют основным периодом разработки. За основной период отбирают из залежей 80-90 % извлекаемых запасов нефти.

Четвертая стадия - завершающая - характеризуется:

- малыми, медленно снижающимися темпами отбора нефти Тдн (в среднем около 1% );

- большими темпами отбора жидкости Тдж (водонефтяные факторы достигают 0,7 7 м33);

- высокой медленно возрастающей обводненностью продукции (ежегодный рост составляет около 1%);

- более резким, чем на третьей стадии, уменьшением действующего фонда скважин из-за обводнения (фонд скважин составляет примерно 0,4 ¸ 0,7 от максимального, снижаясь иногда до 0,1);

- отбором за период стадии 10 ¸ 20% балансовых запасов нефти.

Продолжительность четвертой стадии сопоставима с длительностью всего предшествующего периода разработки залежи, составляет 15-20 лет и более, определяется пределом экономической рентабельности, т. е. минимальным дебитом, при котором еще рентабельна эксплуатация скважин. Предел рентабельности обычно наступает при обводненности продукции примерно на 98%.

8. Геологические и фильтрационные (гидродинамические) модели месторождения углеводородов.

Известен способ построения геолого-гидродинамической модели [RU 2135766, МПК E21B 49/00]. Он включает проведение геофизических исследований скважин (ГИС), геологопромысловых исследований скважин и лабораторные исследования свойств пластовых флюидов и пористых сред, интерпретацию материалов ГИС, построение детальной объемной геолого-гидродинамической модели слоисто-неоднородного пласта расчленением и корреляцией разрезов по данным ГИС, определение объемов накопленной добычи нефти для добывающих скважин и объемов закачек для нагнетательных скважин и выдачу рекомендаций по проведению геолого-технических мероприятий. Дополнительно проводят комплекс каротажных исследований скважин и осуществляют построение локальных геолого-статистических разрезов по комплексу каротажных кривых. Недостаток данного способа заключается в отсутствии комплексности исследований, низкой достоверности. Способ не учитывает генетических факторов, поэтому построенная модель не дает качественной характеристики объекта и параметров его залегания.

Известен способ разработки мелких и средних нефтяных или нефтегазовых месторождений, включающий построение гидродинамической модели [RU 2313662, МПК E21B 43/16], ограничивающийся только геофизическим комплексом методов, поэтому способ обладает односторонней оценкой и не учитывает важных генетических факторов.

Технический результат предлагаемого способа состоит в детальном построении геологической и гидродинамической моделей нефти и газа, в отображении модели условий осадконакопления, позволяет отображать неоднородности природного резервуара углеводородов, отрабатывать залежи с трудноизвлекаемыми запасами, а также повысить эффективность разработки и эксплуатации месторождения.

Способ построения геологической и гидродинамической моделей месторождений нефти и газа, включающий определение условий формирования пород по вещественному составу, а также по текстурным и структурным диагностическим признакам (литолого-фациальный анализ (ЛФА)), проведение минералого-петрографического анализа осадочных пород исследуемого объекта, интерпретацию материалов геофизического исследования скважин (ГИС), обработку данных методами многомерной математической статистики, при этом вначале устанавливают фации по комплексу диагностических признаков, после чего проводят верификацию набором минерально-петрографических параметров, далее методами многомерной статистики проводят анализ зависимостей между цифровыми (ФЕС, ГИС) и синтетическими показателями, которые представляют собой качественные характеристики извлекаемых пород, полученные в результате ЛФА, такие как текстура и гранулометрический состав, закодированные и представляющие собой числовую форму, на основе которых формируют трехмерную модель залежи углеводородов.

Создание модели состоит из последовательных этапов: построение литолого-фациальной модели путем изучения керна и результатов геофизических исследований скважин (ГИС). Проводят корреляцию по имеющемуся фонду скважин. Делают выводы по неоднородности пласта. Формируют предварительную модель пласта, производят уточнение по сейсмогеологической интерпретации.

Выделяют типы (классы) пород с близкой характеристикой порового пространства. Определяют гидравлическую единицу потока, которая базируется на расчете параметра индикатора гидравлической единицы Flow zone indicator (FZI). Строят петрофизическую модель путем формирования объемной сети параметров гидравлических единиц потока. Рассчитывают индивидуальные зависимости пористости и проницаемости для выделенных на основе кернового материала и электрометрических параметров фаций. Ключевым этапом является установление фаций по комплексу диагностических признаков (гранулометрический состав, сортированность, текстура, наличие растительных остатков) с верификацией набором минерально-петрографических показателей. Определяют пористость и водонасыщенность по данным ГИС. Строят совмещенную трехмерную модель фаций и параметров FZI.

Полученную исходную информацию переводят в числовую форму посредством кодирования. Выделяют значимые связи между количественными данными геофизического исследования скважин, фильтрационно-емкостных свойств и качественными показателями, полученными в результате проведения литолого-фациального анализа путем многомерной математической статистики. Дают геологическую интерпретацию наиболее значимых выявленных факторов.

Методика применима в нефтегазодобывающей отрасли для построения литолого-фациальных моделей терригенного коллектора, корректировки подсчета запасов, выбора способа разработки залежи. Получен новый результат, который позволяет отображать неоднородности резервуара, тем самым возможно отрабатывать сложнопостроенные залежи с трудноизвлекаемыми запасами углеводородов, а также повысить эффективность и адекватность модели разработки залежи нефти и газа. Как следствие, возрастает уровень изученности месторождения, появляется возможность сократить большой фонд бездействующих скважин и др.

Указанные преимущества позволяют сократить финансовые, временные и энергетические затраты.

Способ построения геологической и гидродинамической моделей месторождений нефти и газа, включающий определение условий формирования пород по вещественному составу, а также по текстурным и структурным диагностическим признакам (литолого-фациальный анализ (ЛФА)), проведение минералого-петрографического анализа осадочных пород исследуемого объекта, интерпретацию материалов геофизического исследования скважин (ГИС), обработку данных методами многомерной математической статистики, отличающийся тем, что вначале устанавливают фации по комплексу диагностических признаков, после чего проводят верификацию набором минерально-петрографических параметров, далее методами многомерной статистики проводят анализ зависимостей между количественными (ФЕС, ГИС) и синтетическими показателями, которые представляют собой качественные характеристики извлекаемых пород, полученные в результате ЛФА, такие как текстура и гранулометрический состав, закодированные и представляющие собой числовую форму, на основе которых формируют трехмерную модель месторождения

9 Уравнение движения для двухфазной фильтрации под действием гидродинамических сил. Кривые относительных фазовых проницаемостей

Уравнение движения фазРассмотрим фильтрацию флюидов в пористых средах, принимаяв качестве закона движения линейный закон фильтрации Дарси .Закон Дарси записан в конечном виде, т.е. для пласта или образца с постоянной площадью сечения, где Ар* -разность приведенных давлений на конечной длине L. Для трубки тока с переменной площадью сечения по длине трубки закон Дарси записывается в дифференциальной форме.

Выделим два сечения - первое на расстоянии х от начала отсчета вдоль линии тока, второе-на расстоянии Ах от первого .Пусть движение флюида происходит в направлении возрастания координаты х.

В сечении с координатой х обозначим приведенное давление через

р* (S, t), в сечении с координатой х + ∆S-через р* (s + ∆S , t). Использовав

формулу получим:

Знак минус появился в правой части формулы потому, что приведенное давление падает по движению жидкости, т.е. градиент приведенного давления отрицателен Dp*/Dх < 0.

Если диаметр трубы не очень мал, капиллярным скачком давлений можно в первом приближении пренебречь. При этом, учитывая к тому же ламинарный характер вытеснения, поперечное сечение трубы вытесняющей жидкостью заполняется не сразу, а постепенно— клин вытесняющей жидкости внедряется в вытесняемую.Каждое поперечное сечение трубы одновременно занято двумя жидкостями, причем часть площади, занятая вытесняющей жидкостью, с течением времени постепенно увеличивается). Поскольку эту часть площади можно трактовать как «насыщенность» при вытеснении из трубы, ясно, что «фазовая проницаемость», определяющая в данном случае соотношение между расходом и градиентом давления, будет зависеть от «насыщенности». В пористой среде на этот эффект непоршневого вытеснения накладывается новый эффект — обусловленное капиллярностью неодновременное начало вытеснения во всех поровых каналах и несинхронный процесс развития дальнейшего вытеснения, когда оно захватило уже все поровые каналы.

10. Уравнение движения для двухфазной фильтрации с учетом действия капиллярных сил. Кривая капиллярного давления.

                      11  Прогнозирование (проектирование) технологических показателей разработки (нефтеизвлечения) на основе аналитической модели процесса. Механизм проектируемых процессов разработки.

     Процесс разработки конкретного нефтяного месторождения однократен и непосредственному наблюдению «доступен» только в ограниченном числе скважино-точек. Это обусловило развитие методов его моделирования, как непрямых, опосредствованных методов научного исследования. Моделирование, и как результат, модель процесса обеспечивают возможность при сравнительно небольших затратах в короткие сроки многократно (многовариантно) «проиграть» медленно протекающие процессы разработки в различных технологических условиях и тем самым выбрать рациональную технологию. При создании моделей процесса разработки нефтяных месторождений моделируют геолого-физические свойства пласта, его геометрическую форму, флюиды и процесс извлечения нефти и газа из недр.

Различают физическое и математическое моделирования. При физическом моделировании на модели, представляющей по существу натурный или масштабно уменьшенный образец оригинала (лабораторную, пилотную установки), воспроизводят и исследуют процессы, качественно одинаковые с процессами, протекающими в реальном объекте. В связи с трудностью создания полного подобия пласта и измерения параметров гидравлические модели нефтяных пластов не нашли применения, хотя физическое моделирование отдельных элементов процесса разработки незаменимо (например, вытеснение нефти водой).

Математическое моделирование заключается в исследовании процессов путем построения и решения системы математических уравнений, относящихся к собственно процессу и краевым условиям. Математическая модель основана на упрощении (идеализации) сложного реального процесса. Для ее создания природные условия соответствующим образом дифференцируют, выделяют среди них главные, определяющие факторы и представляют их в таком виде, который обеспечивает возможность достижения цели. Причем нефтегазоносный пласт рассматривают как единую гидродинамически связанную систему не только во всей области нефтегазоносности, но и включая окружающую водонапорную область. Перемещение флюидов внутри этой единой системы определяется начальными (до начала разработки) и граничными (на поверхностях, ограничивающих пласт с внешних сторон, и на стенках скважин внутри пласта) условиями или в совокупности краевыми условиями.

Аналоговый метод математического моделирования базируется на подобии явлений и процессов различной физической природы, т. е. на широкой физической аналогии. Можно назвать аналогии между полями фильтрации жидкости (закон Дарси), электрического тока в проводящей среде (закон Ома), электрическим в диэлектрике (закон индукции), магнитным (закон магнитной индукции) и температурным (основное уравнение теплопроводности).

Электрическое моделирование процесса разработки основано на электрогидродинамической аналогии (ЭГДА), т. е. аналогиимежду движением электрического тока в проводящей среде и фильтрацией жидкости в пористой среде.

Вычислительные методы подразделяются на аналитические, численные и статистические.

Аналитические методы соответствуют классическому подходу к моделированию процессов, когда ставится исходная задача, вводятся упрощающие пред- положения и на их основе формулируется новая задача, которая поддается решению в виде аналитического выражения, формулы, обеспечивающей получение значения функции для каждого значения аргумента. Упрощающие предположения иногда приводят к существенным погрешностям в результатах проектирования, а без них задача в аналитической форме не решается. К числу аналитических методов, дающих точные решения задач разработки нефтяных месторождений, т. е. в точности удовлетворяющих исходным уравнениям, начальным и граничным условиям, относятся метод разделения переменных (метод Фурье), методы теории функций комплексного переменного, интегральных преобразований и др. Приближенные решения получают с использованием методов эквивалентных фильтрационных сопротивлений, последовательной смены стационарных состояний, интегральных соотношений и др.

Метод эквивалентных фильтрационных сопротивлений — основной аналитический метод определения количественной связи между дебитами скважин и давлениями на их забоях и на контуре питания пласта (нагнетания воды) в условиях жесткого водонапорного режима. Сущность метода состоит в замене полного фильтрационного сопротивления реального потока жидкостей сложной конфигурации несколькими эквивалентными (равнозначными) последовательными или параллельными фильтрационными сопротивлениями простейших (прямолинейно-параллельных, плоскорадиальных) потоков. Понятно, что такая замена вносит определенную погрешность в результаты расчета, которая однако допустима при недостаточной точности исходной геолого-промысловой информации.

Дебит одной скважины в прямолинейном бесконечном ряду при установившемся притоке однородной несжимаемой жидкости можно записать


Дата добавления: 2018-04-15; просмотров: 963; Мы поможем в написании вашей работы!

Поделиться с друзьями:






Мы поможем в написании ваших работ!