Вопрос.Клеточное ядро. Функция ядра: хранение, воспроизведение и передача наследственной информации



Ядро клетки играет основную роль в ее жизнедеятельности, с его удалением клетка прекращает свои функции и гибнет. В большинстве животных клеток одно ядро, но встречаются и многоядерные клетки (печень и мышцы человека, грибы, инфузории, зеленые водоросли). Эритроциты млекопитающих развиваются из клеток-предшественников, содержащих ядро, но зрелые эритроциты утрачивают его и живут недолго.

Ядро окружено двойной мембраной, пронизанной порами, посредством которых оно тесно связано с каналами эндоплазматической сети и цитоплазмой. Внутри ядра находится хроматин - спирализованные участки хромосом. В период деления клетки они превращаются в палочковидные структуры, хорошо различимые в световой микроскоп. Хромосомы - это сложный комплекс белков с ДНК, называемый нуклеопротеидом.

Функции ядра состоят в регуляции всех жизненных отправлений клетки, которую оно осуществляет при помощи ДНК и РНК-материальных носителей наследственной информации. В ходе подготовки к делению клетки ДНК удваивается, в процессе митоза хромосомы расходятся и передаются дочерним клеткам, обеспечивая преемственность наследственной информации у каждого вида организмов.

Кариоплазма - жидкая фаза ядра, в которой в растворенном виде находятся продукты жизнедеятельности ядерных структур

Ядрышко - обособленная, наиболее плотная часть ядра. В состав ядрышка входят сложные белки и РНК, свободные или связанные фосфаты калия, магния, кальция, железа, цинка, а также рибосомы. Ядрышко исчезает перед началом деления клетки и вновь формируется в последней фазе деления.

Таким образом, клетка обладает тонкой и весьма сложной организацией. Обширная сеть цитоплазматических мембран и мембранный принцип строения органоидов позволяют разграничить множество одновременно протекающих в клетке химических реакций. Каждое из внутриклеточных образований имеет свою структуру и специфическую функцию, но только при их взаимодействии возможна гармоничная жизнедеятельность клетки.На основе такого взаимодействия вещества из окружающей среды поступают в клетку, а отработанные продукты выводятся из нее во внешнюю среду - так совершается обмен веществ. Совершенство структурной организации клетки могло возникнуть только в результате длительной биологической эволюции, в процессе которой выполняемые ею функции постепенно усложнялись.

Простейшие одноклеточные формы представляют собой и клетку, и организм со всеми его жизненными проявлениями. В многоклеточных организмах клетки образуют однородные группы - ткани. В свою очередь ткани формируют органы, системы, и их функции определяются общей жизнедеятельностью целостного организма.

Помимо организмов с типичной клеточной организацией (эукариотические клетки)существуют относительно простые, доядерные, илипрокариотические, клетки - бактерии и синезеленые, у которых отсутствуют оформленное ядро, окруженное ядерной мембраной, и высокоспециализированные внутриклеточные органоиды. Особую форму организации живого представляют вирусы и бактериофаги (фаги). Их строение крайне упрощено: они состоят из ДНК (либо РНК) и белкового футляра. Свои функции обмена веществ и размножения вирусы и фаги осуществляют только внутри клеток другого организма: вирусы - внутри клеток растений и животных

Вопросы для самопроверки:

1.Основные положения клеточной теории.

2.Перечислите компоненты прокариотической клетки.

3.Функции ядра.

4.Перечислите особенности эукаритической клетки.

 

Лекция № 3

Тема: Биологическое значение химических элементов

Цель:Довести до осознания и осмысления учащихся понятие о химических элементах, входящих в состав живых организмов,Продолжить формирование единства естественно – научной картины мира; Развивать умения анализировать, сравнивать, делать выводы; развивать логическое мышление ,развивать познавательную активность учащихся; повышать учебную мотивацию к изучению химии и биологии.Воспитывать чувство ответственности за сохранение своего здоровья, бережное отношение к окружающему миру.

Продолжительность:2 часа

План:

1.Неорганические вещества в составе клетки. Роль воды как растворителя и основного компонента внутренней среды организмов.

2.Углеводы и липиды в клетке. Структура и биологические функции белков.

3.Строение нуклеотидов и структура полинуклеотидных цепей ДНК и РНК, АТФ.

Введение

Биология — наука о жизни. Важнейшая задача биологии — изучение многообразия, строения, жизнедеятельности, индивидуального развития и эволюции живых организмов, их взаимоотношений со средой обитания.

Живые организмы имеют ряд особенностей, отличающих их от неживой природы. По отдельности каждое из отличий достаточно условно, поэтому их следует рассматривать в комплексе.

Признаки, отличающие живую материю от неживой:

  1. способность к размножению и передаче наследственной информации следующему поколению;
  2. обмен веществ и энергии;
  3. возбудимость;
  4. адаптированность к конкретным условиям обитания;
  5. строительный материал — биополимеры (важнейшие из них — белки и нуклеиновые кислоты);
  6. специализация от молекул до органов и высокая степень их организации;
  7. рост;
  8. старение;
  9. смерть.

Уровни организации живой материи:

  1. молекулярный,
  2. клеточный,
  3. тканевой,
  4. органный,
  5. организменный,
  6. популяционно-видовой,
  7. биогеоценотический,
  8. биосферный.

Многообразие жизни

Живые организмы, имеющие клеточное строение, подразделяются на две группы: 1) прокариоты (отсутствует структурно оформленное ядро), 2) эукариоты (имеется структурно оформленное ядро). К прокариотам относятся бактерии, к эукариотам — растения, животные, грибы. Кроме выше перечисленных, существует группа организмов, не имеющих клеточного строения, — вирусы, которые могут размножаться, только паразитируя или в прокариотических, или в эукариотических клетках.

Первыми на нашей планете появились безъядерные клетки. Большинством ученых принимается, что ядерные организмы появились в результате симбиоза древних архебактерий с синезелеными водорослями и бактериями-окислителями (теория симбиогенеза).

Цитология

Цитология — наука о клетке. Изучает строение и функции клеток одноклеточных и многоклеточных организмов. Клетка является элементарной единицей строения, функционирования, роста и развития всех живых существ. Поэтому процессы и закономерности, характерные для цитологии, лежат в основе процессов, изучаемых многими другими науками (анатомия, генетика, эмбриология, биохимия и др.).

Химические элементы клетки

Химический элемент — определенный вид атомов с одинаковым положительным зарядом ядра. В клетках обнаружено около 80 химических элементов. Их можно разделить на четыре группы:
1 группа — углерод, водород, кислород, азот (98% от содержимого клетки),
2 группа — калий, натрий, кальций, магний, сера, фосфор, хлор, железо (1,9%),
3 группа — цинк, медь, фтор, йод, кобальт, молибден и др. (меньше 0,01%),
4 группа — золото, уран, радий и др. (меньше 0,00001%).

Элементы первой и второй групп в большинстве пособий называют макроэлементами, элементы третьей группы — микроэлементами, элементы четвертой группы — ультрамикроэлементами. Для макро- и микроэлементов выяснены процессы и функции, в которых они участвуют. Для большинства ультрамикроэлементов биологическая роль не выявлена.

Химический элемент Вещества, в которых химический элемент содержится Процессы, в которых химический элемент участвует
Углерод, водород, кислород, азот Белки, нуклеиновые кислоты, липиды, углеводы и др. органические вещества Синтез органических веществ и весь комплекс функций, осуществляемых этими органическими веществами
Калий, натрий Na+ и K+ Обеспечивание функции мембран, в частности, поддержание электрического потенциала клеточной мембраны, работы Na+/Ka+-насоса, проведение нервных импульсов, анионный, катионный и осмотический балансы

Кальций

Са+2 Участие в процессе свертывания крови
Фосфат кальция, карбонат кальция Костная ткань, зубная эмаль, раковины моллюсков
Пектат кальция Формирование срединной пластинки и клеточной стенки у растений
Магний Хлорофилл Фотосинтез
Сера Белки Формирование пространственной структуры белка за счет образования дисульфидных мостиков
Фосфор Нуклеиновые кислоты, АТФ Синтез нуклеиновых кислот

Хлор

Cl- Поддержание электрического потенциала клеточной мембраны, работы Na+/Ka+-насоса, проведение нервных импульсов, анионный, катионный и осмотический балансы
HCl Активизация пищеварительных ферментов желудочного сока

Железо

Гемоглобин Транспорт кислорода
Цитохромы Перенос электронов при фотосинтезе и дыхании
Марганец Декарбоксилазы, дегидрогеназы Окисление жирных кислот, участие в процессах дыхания и фотосинтеза

Медь

Гемоцианин Транспорт кислорода у некоторых беспозвоночных
Тирозиназа Образование меланина
Кобальт Витамин В12 Формирование эритроцитов

Цинк

Алькогольдегидрогеназа Анаэробное дыхание у растений
Карбоангидраза Транспорт СО2 у позвоночных
Фтор Фторид кальция Костная ткань, зубная эмаль
Йод Тироксин Регуляция основного обмена
Молибден Нитрогеназа Фиксация азота

 

Атомы химических элементов в живых организмах образуют неорганические (вода, соли) и органические соединения (белки, нуклеиновые кислоты, липиды, углеводы). На атомном уровне различий между живой и неживой материей нет, различия появятся на следующих, более высоких, уровнях организации живой материи.

Вода

Вода — самое распространенное неорганическое соединение. Содержание воды составляет от 10% (зубная эмаль) до 90% массы клетки (развивающийся эмбрион). Без воды жизнь невозможна, биологическое значение воды определяется ее химическими и физическими свойствами.

Молекула воды имеет угловую форму: атомы водорода по отношению к кислороду образуют угол, равный 104,5°. Та часть молекулы, где находится водород, заряжена положительно, часть, где находится кислород, — отрицательно, в связи с этим молекула воды является диполем. Между диполями воды образуются водородные связи. Физические свойства воды: прозрачна, максимальная плотность — при 4 °С, высокая теплоемкость, практически не сжимается; чистая вода плохо проводит тепло и электричество, замерзает при 0 °С, кипит при 100 °С и т.д. Химические свойства воды: хороший растворитель, образует гидраты, вступает в реакции гидролитического разложения, взаимодействует со многими оксидами и т.д. По отношению к способности растворяться в воде различают: гидрофильные вещества — хорошо растворимые, гидрофобные вещества — практически нерастворимые в воде.

Биологическое значение воды:


Дата добавления: 2018-04-05; просмотров: 2531; Мы поможем в написании вашей работы!

Поделиться с друзьями:






Мы поможем в написании ваших работ!