Системы линейных уравнений: основные понятия, теорема Кронекера-Капелли



Линейная алгебра

Матрицы: основные понятия, действия над матрицами.

Основные понятия и обозначения. Пусть m и n два произвольных натуральных числа. Матрицей размера m на n (записывается так )называется совокупность mn вещественных (комплексных) чисел или элементов другой структуры (многочлены, функции и т.д.), записанных в виде прямоугольной таблицы, которая состоит из m строк и n столбцов и взятая в круглые или прямоугольные или в двойные прямые скобки. При этом сами числа называются элементами матрицы и каждому элементу ставится в соответствие два числа -номер строки и номер столбца.

Для обозначения матрицы используются прописные латинские буквы, при этом саму матрицу заключают в круглые или прямоугольные или в двойные прямые скобки. Элементы матрицыобозначают строчными латинскими буквами, снабженными двумя индексами: - элемент матрицы, расположенный в i-й строке и j-м столбце или коротко элемент в позиции (i,j). В общем виде матрица размера m на n может быть записана следующим образом

Приведём некоторые обозначения, которыми будем пользоваться в дальнейшем:

- множество всех матриц размера m на n;

- матрица A с элементами в позиции (i,j);

- матрица размера m на n.

Элементы , где i=j, называются диагональными, а элементы , где - внедиагональными. Совокупность диагональных элементов , где k = min (m,n), называется главной диагональю матрицы.

Матрица, все элементы которой равны нулю, называется нулевой матрицей и обозначается символом O.

Заметим, что для каждого размера существует своя нулевая матрица.

Матрица размера n на n называется квадратной матрицей n-го порядка, т.е. число строк равно числу столбцов.

Квадратная матрица называется диагональной, если все ее внедиагональные элементы равны нулю.

Диагональная матрица, у которой все диагональные элементы равны 1, называется единичной матрицей и обозначается символом I или E.

Матрица размера называется матрицей-строкой или вектор-строкой. Матрица размера называется матрицей столбцом или вектор-столбцом.

 

Определители: основные понятия, свойства определителей.

Определи́тель (или детермина́нт) — одно из основных понятий линейной алгебры. Определитель матрицы является многочленом от элементов квадратной матрицы (то есть такой, у которой количество строк и столбцов равно). В общем случае матрица может быть определена над любым коммутативным кольцом, в этом случае определитель будет элементом того же кольца.

Основные свойства определителей

1°. Величина определителя не изменится, если его строки и столбцы поменять местами, т.е.

.

2°. При перестановке двух строк (столбцов) его знак меняется на противоположный.

3°. Определитель равен нулю, если:

а) все элементы какой-нибудь строки (столбца) равны нулю;

б) элементы каких-либо двух строк (столбцов) пропорциональны;

в) элементы каких-либо двух строк (столбцов) равны.

4°. Общий множитель элементов какой-нибудь строки (столбца) можно выносить за знак определителя

.

5°. .

6°. Если к элементам некоторой строки (столбца) определителя прибавить соответствующие элементы другой строки (столбца), умноженные на общий множитель , то величина определителя не изменится.

.

 

Кстати, значение определителя третьего порядка или его может вычисляться по следующему мнемоническому правилу:

+ + -

- - - =

Ранг матрицы.

Рассмотрим прямоугольную матрицу. Если в этой матрице выделить произвольно k строк и k столбцов, то элементы, стоящие на пересечении выделенных строк и столбцов, образуют квадратную матрицу k-го порядка. Определитель этой матрицы называется минором k-го порядка матрицы А. Очевидно, что матрица А обладает минорами любого порядка от 1 до наименьшего из чисел m и n. Среди всех отличных от нуля миноров матрицы А найдется по крайней мере один минор, порядок которого будет наибольшим. Наибольший из порядков миноров данной матрицы, отличных от нуля, называется рангом матрицы. Если ранг матрицы А равен r, то это означает, что в матрице А имеется отличный от нуля минор порядка r, но всякий минор порядка, большего чем r, равен нулю. Ранг матрицы А обозначается через r(A). Очевидно, что выполняется соотношение

Системы линейных уравнений: основные понятия, теорема Кронекера-Капелли.

Определение. Система линейных уравнений — это объединение из n линейных уравнений, каждое из которых содержит k переменных. Записывается это так:

Многие, впервые сталкиваясь с высшей алгеброй, ошибочно полагают, что число уравнений обязательно должно совпадать с числом переменных. В школьной алгебре так обычно и бывает, однако для высшей алгебры это, вообще говоря, неверно.

Определение. Решение системы уравнений — это последовательность чисел (k1,k2, ..., kn), которая является решением каждого уравнения системы, т.е. при подстановке в это уравнение вместо переменных x1, x2, ..., xn дает верное числовое равенство.

Соответственно, решить систему уравнений — значит найти множество всех ее решений или доказать, что это множество пусто. Поскольку число уравнений и число неизвестных может не совпадать, возможны три случая:

Система несовместна, т.е. множество всех решений пусто. Достаточно редкий случай, который легко обнаруживается независимо от того, каким методом решать систему.

Система совместна и определена, т.е. имеет ровно одно решение. Система совместна и не определена, т.е. имеет бесконечно много решений.

Определение. Переменная xi называется разрешенной, если она входит только в одно уравнение системы, причем с коэффициентом 1. Другими словами, в остальных уравнениях коэффициент при переменной xi должен быть равен нулю.

Если в каждом уравнении выбрать по одной разрешенной переменной, получим набор разрешенных переменных для всей системы уравнений. Сама система, записанная в таком виде, тоже будет называться разрешенной. Вот примеры разрешенных систем:

Обе системы являются разрешенными относительно переменных x1, x3 и x4. Впрочем, с тем же успехом можно утверждать, что вторая система — разрешенная относительно x1, x3 и x5. Достаточно переписать самое последнее уравнение в видеx5 = x4.

Теперь рассмотрим более общий случай. Пусть всего у нас k переменных, из которыхr являются разрешенными. Тогда возможны два случая:

Число разрешенных переменных r равно общему числу переменных k: r = k. Получаем систему из k уравнений, в которых r = k разрешенных переменных. Такая система является совместной и определенной, т.к. x1 = b1, x2 = b2, ..., xk = bk;

Число разрешенных переменных r меньше общего числа переменных k: r < k. Остальные (k − r) переменных называются свободными — они могут принимать любые значения, из которых легко вычисляются разрешенные переменные.

Так, в приведенных выше системах переменные x2, x5, x6 (для первой системы) и x2, x5(для второй) являются свободными. Случай, когда есть свободные переменные, лучше сформулировать в виде теоремы:

Теорема. Если в системе из n уравнений переменные x1, x2, ..., xr — разрешенные, а xr + 1, xr + 2, ..., xk — свободные, то:

Если задать значения свободным переменным (xr + 1 = tr + 1, xr + 2 = tr + 2, ..., xk = tk), а затем найти значения x1, x2, ..., xr, получим одно из решений.

Если в двух решениях значения свободных переменных совпадают, то значения разрешенных переменных тоже совпадают, т.е. решения равны.

Теорема Кронекера – Капелли

(условие совместности системы)

Теорема: Система совместна (имеет хотя бы одно решение) тогда и только тогда, когда ранг матрицы системы равен рангу расширенной матрицы.

RgA = RgA*.

Очевидно, что система (1) может быть записана в виде:

x1 + x2 + … + xn

Доказательство.

1) Если решение существует, то столбец свободных членов есть линейная комбинация столбцов матрицы А, а значит добавление этого столбца в матрицу, т.е. переход А®А* не изменяют ранга.

2) Если RgA = RgA*, то это означает, что они имеют один и тот же базисный минор. Столбец свободных членов – линейная комбинация столбцов базисного минора, те верна запись, приведенная выше.

Пример. Определить совместность системы линейных уравнений:

A =~ . RgA = 2.

A* = RgA* = 3.

Система несовместна.

Пример. Определить совместность системы линейных уравнений.

А = ; = 2 + 12 = 14 ¹ 0; RgA = 2;

A* =RgA* = 2.

Система совместна. Решения: x1 = 1; x2 =1/2.

Аналитическая геометрия


Дата добавления: 2018-04-04; просмотров: 972; Мы поможем в написании вашей работы!

Поделиться с друзьями:






Мы поможем в написании ваших работ!