Частные производные и дифференцируемость



Функций нескольких переменных.

Пусть функция z=f(M)определена в некоторой окрестности точки М(x; у).Придадим переменной x в точке М произвольное приращение Δx, оставляя значение переменной y неизменным, т. Е. перейдем на плоскости от точки М (x; у)к точке M1 (x+ Δx; у). При этом Δx таково, что точка M1 лежит в указанной окрестности точки М. Тогда соответствующее приращение функции

Δxz= f (x+ Δx; у)- f (x; у)

называется частным приращением функции по переменной x в точке М (х; у). Аналогично определяется частное приращение функции по переменной y

Δyz= f (x; у+ Δy)- f (x; у).

Определение 1.Если существует предел

то он называется частной производной функции z=f(M) в точке М по переменной x (по переменной y) и обозначается одним из следующих символов:

Из определения следует, что частная производная функции двух переменных по переменной x представляет собой обыкновенную производную функции одной переменной x при фиксированном значении переменной y. Поэтому частные производные вычисляются по формулам и правилам вычисления производных функции одной переменной.

Определение 2.Полным приращением функции z=f(M) в точке М(x; y), соответствующим приращениям Δx и Δy переменных x и y, называется функция

Δz= f (x+Δx; у+Δy)- f (x; у).

Определение 3.Функция z=f(M) называется дифференцируемой в точке M, если ее полное приращение в этой точке может быть представлено в виде

где A и B – некоторые не зависящие от Δx и Δy числа, а αx; Δyβx; Δy) – бесконечно малые при Δx→0, Δy→0 функции.

Известно, что если функция одной переменной дифференцируема в некоторой точке, то она непрерывна и имеет производную в этой точке. Из существования производной функции одной переменной в данной точке следует дифференцируемость функции в этой точке. Выясним, как переносятся эти свойства на функции двух переменных.

Теорема 1.Если функция z=f(M) дифференцируема в точке M, то она непрерывна в этой точке.

Теорема 2.Если функция z=f(M) дифференцируема в точке M(x; y), то она имеет в этой точке частные производные и , причем

,

Однако в отличие от функции одной переменной, существования частных производных не достаточно для дифференцируемости функции.

Теорема 3 (Достаточное условие дифференцируемости функции).Если функция z=f(M) имеет частные производные в некоторой δ-окрестности точки M и эти производные непрерывны в самой точке M, то функция дифференцируема в точке M.

 

Частные производные высших порядков

Далее можно определить частные производные высших порядков. Так производные от производных первого порядка называются частными производными второго порядка. Они определяются следующим образом

.

Частные производные вида называются смешанными частными производными. Возникает естественный вопрос о равенстве смешанных частных производных, однако это возможно при выполнении некоторых условий.

Теорема 4. Если производные  существуют в некоторой δ-окрестности точки M(x; y) и непрерывны в самой точке M, то они равны между собой в этой точке, то есть имеет место равенство


Дата добавления: 2018-04-04; просмотров: 307; Мы поможем в написании вашей работы!

Поделиться с друзьями:






Мы поможем в написании ваших работ!