Несобственные интегралы с бесконечным нижним пределом



Аналогично определяется несобственный интеграл от непрерывной функции с бесконечным нижним пределом интегрирования, обозначаемый символом , а именно

.

Если этот предел существует (и, значит, конечен, то есть, равен некоторому числу, а не бесконечности), то данный несобственный интеграл называется сходящимся.

Пример 6. Вычислить несобственный интеграл с бесконечным нижним пределом(если он сходится).

Решение. Находим предел данного интеграла:

Итак, данный несобственный интеграл сходится, а его значение равно -1/2.

Несобственные интегралы с двумя бесконечными пределами

Несобственный интеграл с двумя бесконечными пределами интегрирования, обозначаемый символом , нужно предварительно представить в виде суммы двух несобственных интегралов, один из которых с конечным верхним пределом интегрирования, другой - с конечным нижним пределом интегрирования, т.е.

.

По определению,

,

причём этот несобственный интеграл считается сходящимся, если оба предела существуют, когда a и b независимо друг от друга неограниченно возрастают по абсолютной величине.

Пример 7. Вычислить несобственный интеграл с двумя бесконечными пределами (если он сходится).

Решение. На основании определения несобственного интеграла с двумя бесконечными пределами представляем данный интеграл как сумму двух несобственных интегралов:

.

Преобразуем подынтегральное выражение к форме , с помощью выделения полного квадрата:

По формуле находим:

(Эта формула, которой мы воспользовались, а также другие формулы, пригодные для интегрирования дробей, приведены в уроке Интегрирование некоторых рациональных дробей и иррациональностей).

Предел этого интеграла существует:

Второй интеграл, составляющий сумму, выражающую исходный интеграл:

Предел этого интеграла также существует:

.

Находим сумму двух интегралов, являющуюся и значением исходного несобственного интеграла с двумя бесконечными пределами:

.

Несобственные интегралы второго рода - от неограниченных функций и их сходимость

Пусть функция f(x) задана на отрезке от a до b и неограниченна на нём. Предположим, что функция обращается в бесконечность в точке b, в то время как во всех остальных точках отрезка она непрерывна.

Определение.Несобственным интегралом функции f(x) на отрезке от a до b называется предел интеграла этой функции с верхним пределом интегрирования c, если при стремлении c к b функция неограниченно возрастает, а в точке x = b функция не определена, т.е.

.

Если этот предел существует, то несобственный интеграл второго рода называется сходящимся, в противном случае - расходящимся.

Используя формулу Ньютона-Лейбница, получаем

.

Это также обобщённая формула Ньютона-Лейбница. Именно она применяется в решении задач на вычисление несобственных интегралов от неограниченных функций.

Пример 8. Вычислить несобственный интеграл (если он сходится).

Решение. Подынтегральная функция при неограниченно возрастает, а в точке x = 0 функция не определена, то есть, не существует. Используя обобщённую формулу Ньютона-Лейбница, получаем

(так как при x = 0 первообразная непрерывна). Итак, данный несобственный интеграл сходится и равен -3/2.

Пример 9. Вычислить несобственный интеграл (если он сходится).

Решение. Подынтегральная функция непрерывна в каждой точке полуотрезка[0, 1]. В точке x = 1 функция обращается в бесконечность. Если взять , то на [0, c] подынтегральная функция непрерывна и, следовательно, существует интеграл.

.

Найдём предел этого интеграла:

Таким образом, несобственный интеграл сходится и его значение мы нашли.

Пример 10. Исследовать на сходимость несобственный интеграл (верхний предел интегрирования больше нижнего).

Решение. Подынтегральная функция обращается в бесконечность при x = b, в остальных точках она непрерывна. Предположим сначала, что , тогда для :

В полученном выражении перейдём к пределу при :

Нетрудно видеть, что предел в правой части существует и равен нулю, когда , то есть , и не существует, когда , то есть .

В первом случае, то есть при

.

Если , то

.

не существует.

Таким образом, вывод нашего исследования следующий: данный несобственный интеграл сходится при и расходитсяпри .

 


Дата добавления: 2018-02-28; просмотров: 740; Мы поможем в написании вашей работы!

Поделиться с друзьями:






Мы поможем в написании ваших работ!