Рекурсивная реализация алгоритмов



Большинство современных языков высокого уровня поддерживают механизм рекурсивного вызова, когда функция, как элемент структуры языка программирования, возвращающая вычисленное значение по своему имени, может вызывать сама себя с другим аргументом. Эта возможность позволяет напрямую реализовывать вычисление рекурсивно определенных функций. Отметим, что в силу тезиса Черча–Тьюринга аппарат рекурсивных функций Черча равномощен машине Тьюринга, и, следовательно, любой рекурсивный алгоритм может быть реализован итерационно.

F(n);
If n=0 or n=1 (проверка возможности прямого вычисления)
Then
F <-- 1
Else
F <-- n*F(n-1); ( рекурсивный вызов функции)
Return (F);
End;

Анализ трудоемкости рекурсивных реализаций алгоритмов, очевидно, связан как с количеством операций, выполняемых при одном вызове функции, так и с количеством таких вызовов. Графическое представление порождаемой данным алгоритмом цепочки рекурсивных вызовов называется деревом рекурсивных вызовов. Более детальное рассмотрение приводит к необходимости учета затрат как на организацию вызова функции и передачи параметров, так и на возврат вычисленных значений и передачу управления в точку вызова.

Можно заметить, что некоторая ветвь дерева рекурсивных вызовов обрывается при достижении такого значения передаваемого параметра, при котором функция может быть вычислена непосредственно. Таким образом, рекурсия эквивалентна конструкции цикла, в котором каждый проход есть выполнение рекурсивной функции с заданным параметром.

Рассмотрим пример для функции вычисления факториала (рис 8.1):

Цепочка рекурсивных возвратов Цепочка рекурсивных вызовов

Рис 8.1 Дерево рекурсии при вычислении факториала – F(5)

Дерево рекурсивных вызовов может иметь и более сложную структуру, если на каждом вызове порождается несколько обращений – фрагмент дерева рекурсий для чисел Фибоначчи представлен на рис 8.2:

Рис 8.2 Фрагмент дерева рекурсии при вычислении чисел Фибоначчи – F(5)

Анализ трудоемкости механизма вызова процедуры

Механизм вызова функции или процедуры в языке высокого уровня существенно зависит от архитектуры компьютера и операционной системы. В рамках IBM PC совместимых компьютеров этот механизм реализован через программный стек. Как передаваемые в процедуру или функцию фактические параметры, так и возвращаемые из них значения помещаются в программный стек специальными командами процессора. Дополнительно сохраняются значения необходимых регистров и адрес возврата в вызывающую процедуру. Схематично этот механизм иллюстрирован на рис 8.3:

Рис 8.2 Механизм вызова процедуры с использованием программного стека

Для подсчета трудоемкости вызова будем считать операции помещения слова в стек и выталкивания из стека элементарными операциями в формальной системе. Тогда при вызове процедуры или функции в стек помещается адрес возврата, состояние необходимых регистров процессора, адреса возвращаемых значений и передаваемые параметры. После этого выполняется переход по адресу на вызываемую процедуру, которая извлекает переданные фактические параметры, выполняет вычисления, помещает их по указанным в стеке адресам, и при завершении работы восстанавливает регистры, выталкивает из стека адрес возврата и осуществляет переход по этому адресу.

Обозначив через:
m - количество передаваемых фактических параметров,
k - количество возвращаемых процедурой значений,
r - количество сохраняемых в стеке регистров,
имеем:

fвызова = m+k+r+1+m+k+r+1 = 2*(m+k+r+1) элементарных операций на один вызов и возврат.

Анализ трудоемкости рекурсивных алгоритмов в части трудоемкости самого рекурсивного вызова можно выполнять разными способами в зависимости от того, как формируется итоговая сумма элементарных операций – рассмотрением в отдельности цепочки рекурсивных вызовов и возвратов, или совокупно по вершинам дерева рекурсивных вызовов.


Дата добавления: 2018-02-28; просмотров: 416; Мы поможем в написании вашей работы!

Поделиться с друзьями:






Мы поможем в написании ваших работ!