Тема программы: Множества, отношения, функции



Цели работы:

1) Обобщить теоретические знания по теме: «Множества, отношения, функции».

2) Рассмотреть алгоритмы решений заданий теме «операции над множествами и вычислять их мощность.», решить задачи.

3) Формировать потребность к самопознанию; умение ставить цели и реализовывать их.

Время выполнения: 1 час

Теоретические основы

Основные понятия множества

Определение 1.1. Множеством называется совокупность каких-либо объектов, обладающим общим для всех характеристическим свойством. Это определение нельзя считать строгим, так как понятие множества является исходным понятием математики и не может быть определено через другие математические объекты. Один из основателей теории множеств Г. Кантор определял множество так: "Множество есть многое, мыслимое как целое".

Пример 1.1.

Следующие совокупности объектов являются множествами: множество деревьев в лесу, множество целых чисел, множество корней уравнения exsinx = 0.5.

Всякое множество состоит из элементов. Множества обозначают большими буквами, например А. В, С, а элементы – маленькими буквами, например, а, b, c.

Множество и его элементы обозначаются следующим образом:

А = {a1, a2, a3} – множество, состоящее из трех элементов;

А = {a1, a2, …} – множество, состоящее из бесконечного числа элементов.

Множество может состоять из элементов, которые сами являются множествами. Нужно различать элемент a и множество, состоящее из единственного элемента a.

Пример 1.2.

Множество А = {1, 2} состоит из двух элементов 1, 2; но множество {А} состоит из одного элемента А

Если элемент a принадлежит множеству А, это записывается следующим образом:

a Î А. Если элемент a непринадлежит множеству А, то записывают так: a Ï А.

Пример 1.3.

Пусть А1 – множество простых чисел, А2 – множество целых чисел, a = 4. Тогда

a Î А2, a Ï А1.

Если все элементы множества А являются элементами множества В и наоборот, т. е. множества А и В совпадают, то говорят, что А = В.

Если каждый элемент множества А является элементом множества В, говорят, что множество А является подмножеством множества В,и записывают А Í В или В Ê А. Отметим, что по определению само множество А является своим подмножеством, т.е. А Í А.

Если А Í В и В Í А, то по ранее введенному определению А = В.

Если А Í В и А ¹ В, то А есть собственное подмножество В, А Ì В. Если А не является собственным подмножеством В, то записывают А Ë В.

Пример 1.4.

Пусть А – множество четных чисел, В  – множество целых чисел, С –множество нечетных чисел. Тогда

А Ì В, С Ì В, А Ë С, В Ë А.

Не надо смешивать отношение принадлежности (Î) и отношение включения (Í).

Пример 1.5.

Пусть А = {2}  – множество, состоящее из одного элемента, В = {{2}, {4}} – множество, состоящее из двух элементов, каждое из которых является одноэлементным множеством. Тогда имеют место следующие соотношения:

2 Î {2};

{2} Ì {{2}, {4}};

2 Ï {{2}, {4}}.

Множество, не содержащее ни одного элемента, называется пустым множеством и обозначается Æ. Принято считать, что пустое множество является подмножеством любого множества, Æ Í А, где А – любое множество. Таким образом, всякое множество содержит в качестве своих подмножеств пустое множество и само себя.

Пример 1.6.

Множество корней уравнения sinx = 2 является пустым.

Множество всех подмножеств данного множества А называется множеством-степенью и обозначается P(A). Множество P(A) состоит из 2n элементов (доказать самостоятельно).

Пример 1.7.

Пусть множество А = {1, 2} состоит из двух элементов 1, 2. Тогда множество P(A) включает в себя пустое множество Æ, два одноэлементных множества {1} и {2} и само множество А = {1, 2}, т. е.

P(A) = {Æ, {1}, {2}, {1, 2}}.

Мы видим, что множество P(A) состоит из четырех элементов (4 = 22).

Существуют следующие способы задания множеств.

1. Перечислением элементов множества. Например:

A = {1, 3, 5, 7, 9} – конечное множество;

B = {1, 2, …, n, …} – бесконечное множество.

2. Указанием свойств элементов множества. Для этого способа пользуются следующим форматом записи: A = {açуказание свойства элементов}. Здесь a является элементом множества A, a Î А.Например:

A = {a ça – простое число} – множество простых чисел;

B = {b çb2 – 1 = 0, b – действительное число} – множество, состоящее из двух элементов, B = {– 1, 1};

Z = {x ç  = 1}– множество, состоящее из одного числа, x = 0.

Операции над множествами

Рассмотрим основные операции над множествами.

Объединением множеств А и В называется множество АÈВ, все элементы которого являются элементами хотя бы одного из множеств А или В:

АÈВ = {x ç xÎ А или  xÎВ}.

Из определения следует, что А Í АÈВ и В Í АÈВ.

Аналогично определяется объединение нескольких множеств

Пример 1.8.

а) Пусть А = {4, 5, 6}, В = {2, 4, 6}.

Тогда АÈВ = {2, 4, 5, 6}.

б) Пусть А – множество чисел, которые делятся на 2, а В – множество чисел, которые делятся на 3:

 А = {2, 4, 6, …}, В = {3, 6, 9, …}.

Тогда АÈВ множество чисел, которые делятся на 2 или на 3:

 АÈВ = {2, 3, 4, 6, 8, 9, 10, …}.

Пересечением множеств А и В называется множество АÇВ, все элементы которого являются элементами обоих множеств А и В:

АÇВ = {x ç xÎ А и xÎВ}.

Из определения следует, что АÇВ Í А, АÇВ Í В и АÇВ Í АÈВ.

Аналогично определяется пересечение нескольких множеств.

Пример 1.9.

Рассмотрим данные из примера 1.8.

а) Пусть А = {4, 5, 6}, В = {2, 4, 6}.

Тогда АÇВ  = {4, 6}.

б) Пусть А – множество чисел, которые делятся на 2, а В – множество чисел, которые делятся на 3:

 А = {2, 4, 6, …}, В = {3, 6, 9, …}.

Тогда АÇВ  множество чисел, которые делятся и на 2 и на 3:

 АÈВ = {6, 12, 18, …}.

Может оказаться, что множества не имеют ни одного общего элемента. Тогда говорят, что множества не пересекаются или что их пересечение – пустое множество.

Пример 1.10.

Пусть А = {1, 2}, В = {2, 3}, C = {3, 4}.

Тогда АÇВÇC =Æ.

Относительным дополнением множества В до множества А называется множество А \ В, все элементы которого являются элементами множества А, но не являются элементами множества В:

А \ В = {x ç xÎ А и xÏВ}.

Пример 1.11.

Рассмотрим данные из примера 1.8.

а) А = {4, 5, 6}, В = {2, 4, 6}.

 А \ В  = {4, 5}, В \ А= {2}.

б) А = {2, 4, 6, …}, В = {3, 6, 9, …}.

Тогда А \ В – множество чисел, которые делятся на 2, но не делятся на 3, а В \ А – множество чисел, которые делятся на 3, но не делятся на 2:

А \ В = {2, 4, 8, 10, 14, …}.

В \ А= {3, 9, 15, 21, 27, …}.

Симметрической разностью множеств А и В  называется множество А + В:

А + В = (А \ В) È (В \ А).

Пример 1.12.

Рассмотрим данные из примера 1.11.

а) А = {4, 5, 6}, В = {2, 4, 6}.

 А \ В  = {4, 5}, В \ А= {2}, А + В = {2, 4, 5}.

б) А = {2, 4, 6, …}, В = {3, 6, 9, …}, А \ В = {2, 4, 8, 10, 14, …}.

В \ А= {3, 9, 15, 21, 27, …}, А + В = {2, 3, 4, 8, 9, …}.

Универсальным множеством  называется такое множество U, что все рассматриваемые в данной задаче множества являются его подмножествами.

Абсолютным дополнением множества А  называется множество всех таких элементов x Î U, которые не принадлежат множеству А: = U \ A.

Пример 1.13.

Пусть А – множество положительных четных чисел.

Тогда U – множество всех натуральных чисел и  - множество положительных нечетных чисел.

Счетные множества

Определение 1.3. Множество, эквивалентное множеству натуральных чисел N = {1, 2, 3, …, n,…}, называется счетным.

Можно сказать также, что множество счетно, если его элементы можно перенумеровать.

Пример 1.20.

Следующие множества являются счетными.:

1. A1 = {–1, –2, …, – n, …};

2. A2 = {2, 22, …, 2n,…};

3. A3 = {2, 4, …, 2n,…};

4. A4 = {…, – n, …, – 1, 0, 1, …, n,…};

Чтобы установить счетность некоторого множества, достаточно указать взаимно однозначное соответствие между элементами данного множества и множества натуральных чисел. Для примера 1.19 взаимно однозначное соответствие устанавливается по следующим правилам: для множества A1: –n «  n; для множества A2: 2n «  n; для множества A3: 2n «  n; счетность множества A4 установлена в примере 1.19; 

 Установить счетность множеств можно также, используя следующие теоремы о счетных множествах (приводятся без доказательств).

Теорема 1. Всякое бесконечное подмножество счетного множества счетно.

Пример 1.21.

Множество A = {3, 6, …, 3n,…} счетно, т.к. A – бесконечное подмножество множества натуральных чисел, A Ì N.

Теорема 2. Объединение конечной или счетной совокупности счетных множеств счетно.

Пример 1.22.

Множество A = {0, 1, …, n,…} неотрицательных целых чисел счетно, множество B = {0, –1, …, –n,…} неположительных целых чисел тоже счетно, поэтому множество всех целых чисел С = АÈB = {…, –n, …– 2, –1, 0, 1, 2, …, n, …} тоже счетно.

Теорема 3. Множество всех рациональных чисел, т.е. чисел вида , где p и q целые числа, счетно.

Теорема 4. Если А = {a1, a2, …} и B = {b1, b2, …} – счетные множества, то множество всех пар С = {(ak, bn), k = 1, 2,…; n = 1, 2, …} счетно.

Пример 1.23.

Геометрический смысл пары (ak, bn) – точка на плоскости с рациональными координатами (ak, bn). Поэтому можно утверждать, что множество всех точек плоскости с рациональными координатами счетно.

Теорема 5. Множество всех многочленов P(x) = a0 + a1x + a2x2 + … + anxn любых степеней с рациональными коэффициентами a0, a1, a2, … an счетно.

Теорема 6. Множество всех корней многочленов любых степеней с рациональными коэффициентами счетно.


Дата добавления: 2018-02-28; просмотров: 701; Мы поможем в написании вашей работы!

Поделиться с друзьями:






Мы поможем в написании ваших работ!