На электродах протекают реакции 6 страница



 

Термодинамика обратимых (равновесных) химических и биохимических реакций Химический потенциал как мера изменения энергии системы за счет изменения массы исходных и конечных продуктов реакции. Уравнение изотермы химической реакции Зависимость константы химического равновесия от температуры. Интегральная и дифференциальной формы уравнения изобары. Применение интегральной и дифференциальная формы уравнения изобары. для определения направления смещения равновесия. Взаимосвязь между константой химического равновесия и изобарно-изотермическим потенциалом.

Взаимосвязь химического потенциала с другими термодинамическими функциями

С точки зрения термодинамики живые клетки представляют собой открытые системы. Как указывалось ранее, открытой называется система, которая обменивается с внешней средой материей и энергией. Основополагающие термодинамические уравнения, написанные для изолированных и закрытых систем, должны быть в этом случае модифицированы. В них необходимо ввести члены, отражающие изменения массы системы. В этом случае дифференцирование уравнения для термодинамических функций U, Н и G будут иметь следующий вид:

                                (6.1)

                                (6.2)

                              (6.3)

где  – химический потенциал, n – число молей соответствующего компонента. Каждому компоненту системы в уравнении соответствует свой член dn. Если в правой части каждого уравнения все переменные, за исключением n1, будут оставаться постоянными, то мы получим следующий ряд равенств:

а также из уравнения (6.1)

Из приведенных выше уравнений видно, что в зависимости от того, какие величины остаются постоянными, химический потенциал представляет собой парциальную молярную внутреннюю энергию, энтальпию или свободную энергию. Поскольку химические процессы в живых клетках и в большинстве экспериментальных систем in vitro протекают при постоянной температуре и при постоянном давлении, наиболее полезным является определение химического потенциала как парциальной молярной свободной энергии. При обсуждении свободной энергии Гиббса мы подчеркиваем значение этой величины как критерия равновесия в системах при постоянных Т и Р: равновесие достигается при G = 0.

Следовательно, когда свободная энергия перестает в системе меняться, химический потенциал любого компонента системы остается постоянным.

Таким образом, условие равновесия может быть записано как I = 0 при Р и Т = const.

Аналогично тому, как мы определяли стандартные изменения для других термодинамических функций и получали стандартные ΔН°,ΔS° и ΔG°, мы можем определить также стандартный химический потенциал μ° как изменение свободной энергии на 1 моль вещества, образующегося, расходующегося или переходящего из одной фазы в другую в своем стандартном состоянии (т.е. при давлении в 1 атм, при определенной температуре и в стандартной эталонной форме).

6.2. летучесть

Стремление к улетучиванию. При описании поведения гетерогенной фазы (например, жидкости, контактирующей с газовой фазой, или твердого вещества в присутствии своих паров) очень часто пользуются понятием летучесть.

Летучесть определяется притяжением между молекулами. Другими факторами, определяющими летучесть, являются кинетическая энергия молекул вещества, его форма, размер и т.д. Наиболее удобным параметром, отражающим летучесть, является давление пара данного вещества. Если в газовой фазе присутствует более чем одно вещество, равновесные давления каждого из них называют парциальными давлениями пара в соответствии с определениями, данными законом парциальных давлений Дальтона.

6.3. Идеальный раствор

Как реальные газы при определенных температурах и давлениях по своим свойствам близки идеальным газам, так и реальные растворы при определенных условиях разбавления приближаются к идеальному раствору.

Идеальным является такой раствор, в котором свойства, присущие растворителю и растворенному веществу, не меняются из-за присутствия новых компонентов, если не считать возможных изменений этих свойств при разбавлении.

Стремление к улетучиванию для молекул растворителя или растворенного вещества уменьшается только в той мере, в которой наличие молекул другого компонента пространственно затрудняет или вообще делает невозможным уход молекул из раствора. В случае идеальных растворов объем является аддитивным, а температура при смешивании не изменяется.

В реальных растворах растворитель и растворенное вещество взаимодействуют друг с другом. Например, если спирт обладает низкой летучестью из-за сильного диполь-дипольного взаимодействия, то при смешивании его с бензолом вследствие разделения диполей полярные молекулы спирта легче переходят в газовую фазу, и парциальное давление его пара будет выше. Возможно и наоборот в случае, например, растворения неполярного вещества в полярном растворителе.

Для того, чтобы применять законы для идеальных растворов в случае реальных, необходимо введение некоторых ограничений. Один из таких принципов носит название предельного закона. Он гласит, что если содержание растворенных молекул в растворе относительно мало, то взаимодействие между ними будет минимальным и, следовательно, они будут слабо влиять на поведение растворителя.

Таким образом, законы идеальных растворов можно применять к реальным растворам, если речь идет о разбавленных. Для рассмотрения свойств реальных растворов при относительно высоких концентрациях растворенного вещества имеются также уравнения, однако они достаточно сложны.

Прежде чем приступить к обсуждению некоторых относительно простых уравнений, тем не менее, позволяющих рассчитывать давление пара, точку замерзания, точку кипения, а также осмотическое давление растворов, познакомимся с двумя фундаментальными соотношениями, лежащими в основе предельных уравнений, – с правилом фаз и уравнением Клаузиуса-Клапейрона.

Правило фаз. На рис. 6.1 показана фазовая диаграмма, количественно описывающая поведение гетерогенной системы, содержащей гомогенные области-фазы. Фазы отделены друг от друга заметными границами, которые называют поверхностями раздела. Каждая фаза гомогенна, однако она не непрерывна. Число фаз равно числу отделенных друг от друга структур, существующих в различных физических состояниях в системе. В одной системе могут существовать несколько жидких или твердых фаз, например: вода – масло, лед – твердая соль. Различают как число фаз, так и число компонентов, образующих фазу. Под числом компонентов понимают число независимых химических индивидуальностей. На рис. 6.1 показана хорошо известная фазовая диаграмма воды. Она является однокомпонентной. Если в воде растворить соль, то получим двухкомпонентную систему. Если растворить два белка в буфере, получим пятикомпонентную систему – два белка, вода, соль и кислота.

Изучение гетерогенных систем сильно упростилось после предложенного в 1874 году Гиббсом обобщения, которое получило название «правило фаз». Оно состоит из очень простого соотношения: а = с – р + 2, где с – число компонентов системы, р – число фаз и f – число степеней свободы системы, т.е. число независимых переменных – таких, как температура, давление и концентрация, которые необходимы для полного описания системы.

Согласно альтернативной формулировке правила фаз, число степеней свободы – это число независимых переменных, которые могут быть изменены без изменения числа фаз. Правило фаз применимо только для систем, находящихся в равновесии.

Посмотрим на фазовую диаграмму воды. Поскольку вода является единственным компонентом, значит с = 1. Вода существует в трех фазах – твердой, жидкой и газообразной. При этом число фаз, которые существуют в равновесии, зависит от температуры и давления.

Рис. 6.1. Фазовая диаграмма воды и гипотетического 1 т идеального раствора (масштаб не соблюдается)

Линия ОА представляет собой кривую давления паров воды. Вдоль этой линии вода и пар находятся в равновесии друг с другом. Экспериментально такую линию получают путем измерения давления пара чистой воды при разных температурах.

Линия ОВ является кривой сублимации льда. Выше этой кривой вода существует в виде льда, ниже – в виде пара. В равновесии лед и пар находятся только вдоль линии ОВ, которая и является границей этих двух фаз.

Линия ОС описывает зависимость точки плавления льда от давления; лед и жидкая вода этой линии находятся в равновесии. Наклон линии ОС относительно оси ординат указывает на то, что при увеличении давления точка плавления льда понижается. Три кривые имеют общую точку пересечения 0, известную под названием «тройной точки».

6.4. Фазовая диаграмма содержит зоны,
линии и тройную точку

Для зоны с = 1, р = 1 и f = 2. Для линий с = 1, р = 2 и f = 1. Для тройной точки с = 1, р = 3 и f = 0. Что означают различные степени свободы? То, что внутри зон f = 2, означает следующее: для описания поведения системы мы должны использовать и температуру и давление, т.е. обе величины могут меняться без изменения числа фаз, значит вода существует в жидком состоянии при различных температурах и давлениях. f = 1 означает, что мы можем установить точку на линии, т.е. описать систему только температурой или давлением. Т.е. вдоль линии каждой температуре соответствует строго определенное давление пара. При любом давлении пара для льда существует только одна точка для температуры плавления. В тройной точке система инвариантна, т.е. f = 0, т.е. система может находиться в равновесии только при одном значении температуры и давления.

Химическая реакция

Химической реакцией можно считать любое изменение вещества, при котором образуется или разрывается химическая связь между атомами. Химическая реакция характеризуется механизмом ее протекания и глубиной протекания.

8.2. Механизм химической реакции

Химические реакции, как правило, не происходят путем непосредственного взаимодействия исходных молекул с прямым переходом их в молекулы продуктов реакции. В большинстве случаев реакции протекают в несколько стадий. Например, окисление ионов двухвалентного железа в кислом растворе молекулярным кислородом состоит из ряда стадий:

Fe2+ + O2 ® Fe3+ + O2-

O2- + H+ ® HO2·

Fe2+ + HO2· ® Fe3+ + HO2-

HO2- + H+ ® H2O2

H2O2 + Fe2+® Fe3+ + OH- + OH·

Fe2+ + OH· ® Fe3+ + OH-

OH- + H+ ® H2O.

Общее стехиометрическое уравнение реакции:

4Fe2+ + 4H+ + O2 ® 4Fe3+ + 2H2O.

Этот сложный путь оказывается, тем не менее, неизмеримо более выгодным, так как ни на одном из семи этапов не требуется встречи более чем двух частиц и ни на одном из этапов не требуется соударения одноименно заряженных частиц.

Совокупность стадий, из которых складывается химическая реакция, носит название механизма химической реакции.

8.3. Исходные, конечные и промежуточные вещества

Вещества, вступающие в процесс химического превращения, называются исходными. Вещества, образующиеся в процессе химического превращения и не претерпевающие в ходе этого процесса дальнейших химических изменений, называются продуктами реакции. Вещества, образующиеся в одних стадиях процесса химического превращения и расходующиеся в других стадиях этого же процесса, называют промежуточными веществами.

8.4. Глубина превращения реакции

Глубина характеризует степень превращения исходных веществ в конечные продукты реакции. Проведенные измерения привели химиков к убеждению, что, во-первых, все мыслимые реакции в какой-то степени происходят, и, во-вторых, не существует реакций, идущих полностью до конца. Однако часто удобнее говорить, что одни реакции совсем не идут, другие идут в ограниченной степени, а третьи потребляют исходные вещества полностью.

8.5. Гомогенные и гетерогенные реакции

Химическая реакция, протекающая в пределах одной фазы, называется гомогенной.

Химическая реакция, протекающая на границах раздела фаз, называется гетерогенной.

Примером гомогенной может служить любая реакция в растворе. Примером гетерогенной может служить любая из реакций, идущих на поверхности твердого катализатора (гетерогенная каталитическая реакция).

8.6. Скорость химической реакции

Важнейшей количественной характеристикой процесса химического превращения является скорость процесса. Понятие скорости характеризует количество вещества, вступающего в реакцию в единицу времени. Это определение, однако, не совсем однозначно, так как в реакции принимают участие несколько веществ в качестве исходных, промежуточных и в качестве продуктов реакции. Поэтому строго можно говорить не о скорости химического процесса вообще, а о скорости по некоторому компоненту. Изменение количества этого компонента принято выражать в числе молей n. Таким образом, для гомофазного химического процесса, идущего при постоянном объеме, скоростью процесса по некоторому веществу называется изменение концентрации этого вещества в единицу времени. Пусть концентрация одного из реагирующих веществ в момент времени t1 равна С1, а в момент времени t2 равна С2. Тогда средняя скорость реакции (`V ) за промежуток времени t2 – t1 равна

.                                                                (8.1)

Поскольку концентрация вещества (исходного) в процессе реакции убывает, то C2 < C1 и разность C2 – C1 имеет отрицательный знак, т.е. C2 – C1 = -DС. Отсюда средняя скорость

.                                                                   (8.2)

Переходя к бесконечно малым изменениям, можно отношение -  заменить на - . В результате производная от концентрации по времени характеризует мгновенную (истинную) скорость химической реакции:

.                                                                   (8.3)

Скорость химической реакции всегда является величиной положительной, отношение же dC/dt может иметь и положительное, и отрицательное значение в зависимости от того, представляет С концентрацию одного из исходных веществ или одного из продуктов реакции. В первом случае dC/dt< 0, но так как скорость должна быть положительной, перед производной ставят минус; во втором случае dС/dt> 0, и чтобы скорость реакции имела положительное значение, берут производную со знаком плюс. В общем случае кинетическое уравнение имеет вид

.                                                                   (8.4)

Однако необходимо учитывать, что измеренные по разным веществам скорости не равны, а пропорциональны одна другой. Например, в реакции синтеза аммиака

N2 + 3H2 « 2HN3

на каждый исчезающий моль N2 расходуется 3 моля H2 и образуется 2 моля аммиака. Соответствующие скорости реакции соотносятся как 1: 3: 2.

Скорость реакции имеет размерность [концентр] × [время]-1. В химической кинетике концентрацию чаще всего выражают в моль/л, а время – в секундах. Отсюда скорость химической реакции выражается в моль× л-1 ×с-1.

8.7. Измерение скорости реакции

В химической кинетике широко используется графический метод изображения функциональных зависимостей. Кривая, изображающая зависимость концентрации какого-либо вещества от времени в ходе процесса химического превращения, носит название кинетической кривой. Крутизна кинетической кривой в каждый момент времени характеризует истинную скорость реакции в этот момент времени, так как наклон касательной в точке численно равен скорости: V = - dc/dt = tga (рис. 8.1):

.                                                                   (8.5)

Рис. 8.1. Кривая, изображающая зависимость концентрации какого-либо вещества от времени в ходе процесса химического превращения, носит название кинетической кривой

Часто под кинетическими кривыми понимают и другие зависимости изменения какого-либо изменяющегося параметра в ходе химической реакции (изменение рН, электропроводности, показателя преломления, оптической плотности и т.д.). Однако рассчитывать скорость накопления или расходования какого-либо из компонентов реакции, исходя из такой кривой, можно лишь в том случае, если существует и известна однозначная зависимость, связывающая концентрацию этого компонента с измеряемым свойством системы.

8.8. Порядок реакции и константа скорости реакции

Скорость химической реакции зависит от целого ряда факторов. При заданных внешних условиях (температура, давление, среда, в которой проходит процесс) скорость является функцией концентрации реагирующих веществ. Зависимость скорости реакции от концентрации реагирующих веществ описывается основным постулатом химической кинетики: скорость реакции в каждый момент времени пропорциональна произведению концентраций реагирующих веществ, имеющихся в данный момент времени, возведенных в некоторые степени. Этот постулат вытекает из физически очевидного предположения о том, что реагируют те молекулы, которые сталкиваются. Известно, что число столкновений зависит от концентрации молекул, поэтому и скорость химической реакции должна определяться теми же факторами. Итак, для реакции А + В ® С + Д можно записать V = k[A]n1× Bn1 , где величины n принято называть порядком реакцию по веществу А и В и т.д. Сумму порядков реакции по всем реагирующим веществам называют порядком реакции.

Следует подчеркнуть, что величины n1 и n2 определяются только экспериментальным путем, так как для подавляющего большинства реакций порядки реакции по веществу не равнозначны стехиометрическим коэффициентам.

Порядок реакции – величина формальная. Он может быть положительным или отрицательным, целым или дробным, а также нулевым числом. Как было уже указано, порядок реакции определяется опытным путем, и его нельзя предсказать заранее, даже для формально простых реакций. Например, скорость реакции H2 + J2 = 2HJ согласно опытным данным может быть записана следующим образом: V = k [H2] [J2], где порядок реакции по водороду и йоду равен единице, а порядок реакции в целом равен 1 + 1 = 2. В этом случае стехиометрическое уравнение правильно изображает элементарный акт реакции.


Дата добавления: 2018-02-28; просмотров: 333; Мы поможем в написании вашей работы!

Поделиться с друзьями:






Мы поможем в написании ваших работ!