Сайт 0-репликации (ориджин репликации, сайт инициации репликации, точка инициации репликации)

Тема 4. Строение, формы и свойства ДНК. Понятие гена, структура и свойства.

 

Развитие генетики на современном этапе связано с расшифровкой молекулярных основ наследственности. Все основные работы в этом направлении выполнены примерно за 20 лет. Расшифровка генетического кода позволила понять структуру и функции гена, а также изучить многие вопросы влияния гена на процессы онтогенеза. Вопросам реализации генетической информации у высших организмов при их развитии в онтогенезе уделяется особо большое внимание в современной молекулярной генетике.  Все дело в том, что общие основы молекулярной генетики были заложены при изучении вирусов и бактерий, у которых генетическая структура, в сравнении с высшими организмами, устроена более просто.

ДНК была открыта Иоганном Фридрихом Мишером в 1869 году. Из остатков клеток, содержащихся в гное, он выделил вещество, в состав которого входят азот и фосфор. Вначале новое вещество получило название нуклеин, а позже, когда Мишер определил, что это вещество обладает кислотными свойствами, вещество получило название нуклеиновая кислота. Биологическая функция новооткрытого вещества была неясна, и долгое время ДНК считалась запасником фосфора в организме. Более того, даже в начале XX века многие биологи считали, что ДНК не имеет никакого отношения к передаче информации, поскольку строение молекулы, по их мнению, было слишком однообразным и не могло содержать закодированную информацию.

Первым, кто предположил, что генетическая информация заключена в хромосомах, был русский ученый Н. К. Кольцов (1927 г.).  Однако он считал, что функцию хранителей наследственной информации  выполняют  специальные белковые молекулы, способные к автосинтезу. Кольцов был близок к решению проблемы генетического кодирования, но тщательные исследования показали, что информация заключена не на белковой молекуле, а на дезоксирибонуклеиновой кислоте (ДНК), которая представляет собой высокополимерное соединение, способное к автосинтезу.

Экспериментальные доказательства роли ДНК в передаче наследственной информации получили Освальд Эвери, Колин Мак-Леон и Маклин Мак-Карти (1944 г.). Они провели трансформацию, т.е. передачу наследственных признаков от одной группы бактерий к другой. В ходе эксперимента безвредная группа бактерий приобрела патогенные свойства, в результате добавления в неё мёртвых болезнетворных бактерий. Было показано, что за вновь приобретенные признаки отвечают выделенные из пневмококков ДНК.

Экспериментальные доказательства роли нуклеиновых кислот в передаче признаков позже  получили американские учёные Алфред Херши и Марта Чейз на бактериофагах (эксперименты Херши-Чейз). Они  вводили радиоактивные изотопы в  белки и ДНК бактериофагов, и показали, что в заражённую клетку передаётся только нуклеиновая кислота фага, а новое поколение фага содержит такие же белки и нуклеиновую кислоту, как исходный фаг.

Но точное строение ДНК, как и способ передачи наследственной информации, вплоть до 50-х годов XX века оставалось неизвестным. Хотя и было доподлинно известно, что ДНК состоит из нескольких цепочек, состоящих из нуклеотидов, никто не знал точно, сколько этих цепочек и как они соединены.

Структура двойной спирали ДНК была предложена Френсисом Криком и Джеймсом Уотсоном  в 1953 году на основании рентгеноструктурных данных, полученных Морисом Уилкинсом и Розалинд Франклин. Позже предложенная Уотсоном и Криком модель строения ДНК была доказана, а их работа отмечена Нобелевской премии по медицине и физиологии в 1962 г. Среди лауреатов не было скончавшейся к тому времени Розалинды Франклин, так как премия не присуждается посмертно.

Дальнейшие работы были связаны с изучением принципа записи информации о строении белков на нуклеиновой кислоте, а также механизмов передачи этой информации к месту синтеза белка и следующему поколению при делении клетки. В 1961 году М. В. Ниренберг, Дж. Маттей ,  С. Очоа расшифровали и экспериментально подтвердили структуру генетического кода, закончив его исследование к 1964 году.

По современным представлениям, дезоксирибонуклеиновая кислота (ДНК) - макромолекула, обеспечивающая хранение, передачу из поколения в поколение и реализацию генетической программы развития и функционирования живых организмов. ДНК является своеобразной матрицей, на которой синтезируется информационная или матричная рибонуклеиновая кислота (м-РНК).

Локализация ДНК у организмов достаточно многообразна. У эукариотов ДНК находится в ядре клетки в составе хромосом, а также в некоторых клеточных органоидах (митохондриях и пластидах).

В клетках прокариотических организмов кольцевая или линейная молекула ДНК, так называемый нуклеоид, прикреплена изнутри к клеточной мембране. И у прокариот и у низших эукариот (например, дрожжей) встречаются также небольшие автономные, преимущественно кольцевые молекулы ДНК, называемые плазмидами. Кроме того, одно- или двухцепочечные молекулы ДНК могут образовывать геном ДНК-содержащих вирусов.

При характеристике величины ДНК организмов используются параметры генома. Геном – это общее содержание ДНК в гаплоидном ядре. Измерения размера генома приводятся в дальтонах, парах нуклеотидов (п. н.) или пикограммах (пг). Соотношение между этими единицами измерения следующие:

1 пг = 10–9 мг = 0,6х1012 дальтон = 0,9х109 п. н.

В гаплоидном геноме человека содержится около 3,2 млрд. п. н., что равно 3,5 пг ДНК. Таким образом, в ядре одной клетки человека содержится около 7 пг ДНК. Если учесть, что средний вес клетки человека равен примерно 1000 пг, то легко рассчитать, что ДНК составляет менее 1% от веса клетки. И, тем не менее, чтобы воспроизвести самым мелким шрифтом ту огромную информацию, которая содержится в молекулах ДНК одной нашей клетки, понадобилось бы тысяча книг по 1000 страниц в каждой. Размеры генома не говорят об уровне организации его обладателя. Например, у саламандры и лилии длина молекул ДНК, содержащихся в одной клетке, в тридцать раз больше, чем у человека.

Число отдельных молекул ДНК в клетке равно числу хромосом. Длина такой молекулы в наибольшей по размеру хромосоме 1 человека составляет около 8 см. Подобных гигантских полимеров пока не выявлено ни в природе, ни среди искусственно синтезированных химических соединений. У человека длина всех молекул ДНК, содержащихся во всех хромосомах одной клетке, составляет примерно 2 метра. Следовательно, длина молекул ДНК в миллиард раз больше их толщины. Так как организм взрослого человека состоит примерно из 5х1013 – 1014 клеток, то общая длина всех молекул ДНК в организме равна 1010 км (это почти в тысячу раз больше расстояния от Земли до Солнца).

С химической точки зрения ДНК — это длинная полимерная молекула, состоящая из повторяющихся блоков — нуклеотидов. Каждый нуклеотид состоит из азотистого основания, сахара (дезоксирибозы) и фосфатной группы. Другая известная нуклеиновая кислота – РНК, устроена аналогичным образом. Отличие состоит в том, что нуклеотиды РНК включают сахар рибозу.

В ДНК встречается четыре вида азотистых оснований (аденин, гуанин, тимин и цитозин). В РНК также встречается четыре вида азотистых оснований. Но вместо тимина присутствует урацил.

Азотистые основания представлены двумя группами: пиримидиновыми и пуриновыми. Основой пиримидинов является шестичленное пиримидиновое кольцо. Пурины имеют в своей структуре два слитых кольца- шестичленное и пятичленное.

Образование химических связей в нуклеотиде между его составляющими и отдельными нуклеотидами в полинуклеотидной цепи осуществляется через молекулу сахара. Поскольку в составе молекулы пентозы имеется 5 атомов углерода, то каждый из них можно пронумеровать индексом от 1' до 5'. В каждом нуклеотиде присоединение азотистого основания происходит к первому углеродному атому (1') пентозы с помощью β-гликозидной связи. Соединение, состоящее из углевода (пентозы) и азотистого основания, называется нуклеозидом (рис. ).

После присоединения к пятому углеродному атому остатка фосфорной кислоты образуется нуклеотид.

Название нуклеотида является производным от названия соответствующего основания. Нуклеотиды и азотистые основания обозначаются заглавными буквами.

Основание                       Нуклеозид Нуклеотиды (и принятые сокращения)

Аденин                            Аденозин Адениловая кислота =  AMP (или dAMP)
Гуанин                            Гуанозин Гуаниловая кислота =  GMP (или dGMP)
Цитозин                          Цитидин  Цитидиловая кислота =  СМР (или dCMP)
Тимин                             Тимидин     Тимидиловая кислота =  ТМР (или dTMР)
Урацил                            Уридин    Уридиловая кислота =  UMP (или dUMP)

ДНК имеет три уровня организации.

Первичная структура представлена полинуклеотидной цепью, скелетную основу которой составляют чередующиеся сахарные и фосфатные группы, связанные 3' - 5' – фосфодиэфирными ковалентными связями. Фосфоэфирные связи образуются между третьим и пятым атомами углерода соседних молекул дезоксирибозы в результате взаимодействия между 3'-гидроксильной (3'—ОН) группой одной молекулы дезоксирибозы и 5'-фосфатной группой (5'—РО3) другой. Этот остов имеет боковые группы, представленные азотистыми основаниями. Асимметричные концы цепи ДНК называются 3' (три прим) и 5' (пять прим). Полярность цепи играет важную роль при синтезе ДНК (удлинение цепи возможно только путём присоединения новых нуклеотидов к свободному 3'-концу).

 

У большинства организмов (кроме некоторых вирусов, содержащих одноцепочечную ДНК) макромолекула ДНК образует вторичную структуру, представленную двумя полинуклеотидными цепями, в которых азотистые основания ориентированы друг к другу. Подобно тому, как в винтовой лестнице сбоку можно увидеть ступеньки, на двойной спирали ДНК в промежутках между фосфатным остовом молекулы можно видеть рёбра оснований, кольца которых расположены в плоскости, перпендикулярной по отношению к продольной оси макромолекулы. Эта двухцепочечная молекула спирализована. Именно, благодаря такому строению, молекула ДНК получила название «двойной спирали».

Связывание нуклеотидов двух нитей ДНК осуществляется за счет водородных связей. Азотистые основания одной из цепей соединены с азотистыми основаниями другой в строго определенном порядке согласно принципу комплементарности: аденин соединяется только с тимином, гуанин — только с цитозином. Разные пары оснований образуют разное количество водородных связей. АТ связаны двумя, ГЦ — тремя водородными связями.

         

Последовательность пар нуклеотидов в ДНК нерегулярна, но сами пары уложены в молекуле как в кристалле. Это дало основание характеризовать молекулу ДНК как линейный апериодический кристалл.

При определении строения ДНК важную роль сыграло наблюдение, которое известно, как «правило Чаргаффа», согласно которым в каждой молекуле ДНК соблюдаются строгие соотношения, связывающие между собой количество азотистых оснований разных типов. Согласно правилам:

1.Сумма нуклеотидов, содержащих пуриновые основания, равна сумме нуклеотидов, содержащих пиримидиновые основания (А + Г = Т + Ц).

2.Независимо от действительного количества каждого основания относительное содержание Г всегда было равно относительному содержанию Ц, а содержание А - содержанию Т. Таким образом, любая ДНК может быть охарактеризована по ее составу как отношение (Г + Ц)/(А + Т), которое, варьируя от 26 до 74%, остается характерным для каждого вида.

Основные характеристики вторичной структуры ДНК:

1. Молекула ДНК образована двумя правозакрученными полинуклеотидными цепями, т.е. если смотреть вдоль оси спирали, повороты следуют по часовой стрелке. Ширина двойной спирали составляет от 22 до 24 Å, или 2,2 - 2,4 нм, длина каждого нуклеотида 3,3 Å (0,33 нм), один поворот спирали состоит из 10 пар оснований. Каждая пара оснований повернута на 36º вокруг оси спирали относительно следующей пары оснований. Таким образом, 10 пар оснований составляют полный оборот в 360°. Две цепи, закручиваясь друг относительно друга, образуют двойную спираль, в которой имеется две бороздки - малая бороздка (около 12 Å шириной) и большая бороздка (около 22 Å шириной). Белки, например, факторы транскрипции, которые присоединяются к определённым последовательностям в двухцепочечной ДНК, обычно взаимодействуют с краями оснований в большой бороздке, где те более доступны. Такая форма ДНК встречается в природе наиболее часто и она получила название В-форма.

 

                      

Рис. Модель вторичной структуры ДНК Уотсона Крика. Две цепи ДНК образуют двойную спираль. 

 

2. Цепи объединены в результате закручивания одной цепи вокруг другой по общей оси. Из-за противоположной последовательности атомов в цепях обе цепи инвертированы относительно друг друга, т.е. направления от 3'-конца к 5'-концу в двух цепях, из которых состоит молекула ДНК, противоположны (цепи «антипараллельны» друг другу).

 

                      5΄ фосфат                                                        3΄ гидроксильная

                                                                     группа

                    3΄ гидроксильная                                                        5΄ фосфат

                             группа

 

Водородные связи между основаниями двух нитей могут разрываться. Разрыв водородных связей может происходить под воздействием различных факторов, что приводит к денатурации молекулы. Например, нагревание ДНК до 950 С вызывает разрушение водородных связей. Это явление называется плавлением ДНК.

Цепочки двойной спирали могут расходиться как замок-молния и под действием ферментов (хеликазы). Причем, на разрыв ГЦ требуется больше энергии, чем на разрыв пары АТ. Процент ГЦ пар и длина молекулы ДНК определяют количество энергии, необходимой для диссоциации цепей: длинные молекулы ДНК с большим содержанием ГЦ более тугоплавки. Поэтому, части молекул ДНК, которые из-за их функций должны быть легко разделяемы, например, последовательности в бактериальных промоторах, обычно содержат большое количество А и Т.

Третичная структура ДНК определяется трехмерной пространственной организацией молекул и зависит от различных факторов.

Альтернативные структуры ДНК

Рассмотренную структуру ДНК обычно считают од­ним из несомненных фактов молекулярной биологии. Но недавно стало очевидным, что некоторые параметры классической В-формы нужно пересмотреть и даже что ДНК может образовывать другие типы двуспиральных структур.

Проблема определения точных значений параметров двойной спирали связана с тем, что все первоначальные значения были получены при изучении дифракции рентге­новских лучей на волокнах ДНК. По этим данным уста­новлены основные характеристики, такие, как число пар оснований на виток, расстояние между соседними парами вдоль оси спирали. Однако этим методом нельзя опреде­лить положения отдельных атомов, как это делают, ис­пользуя рентгеноструктурный анализ. Поэтому мо­дель уточняют, согласуя расчетную картину дифракции рентгеновских лучей с экспериментальными данными. Теоретически на основе одних и тех же данных всегда можно построить разные модели. Дело в том, что мо­дель удовлетворяет усредненным данным и, следователь­но, в определенных областях структуры возможны вариа­ции. Например, до сих пор мы говорили о ДНК как о длинной, жесткой двойной спирали, но мы знаем, что в действительности она должна быть свернута и плотно уложена, для того чтобы уместиться в клетке. При этом детали ее структуры могут изменяться.

Сейчас считается, что двухцепочечная ДНК-всегда двойная спираль. Однако была предложена и другая модель, хорошо согласующаяся с данными ди­фракции рентгеновских лучей. Согласно этой модели, две антипараллельные цепи ДНК также соединяются путем комплементарного спаривания оснований, но лежат «бок о бок», вместо того, чтобы закручиваться в непрерывную двойную спираль.

Существование ДНК в виде двойной спирали было подтверждено экспериментами, в которых прямо измеряли число пар оснований на виток. Оказа­лось, что их 10,4 вместо 10,0, предсказанных классической В-моделью. Это различие вызвало необходимость не­сколько изменить угол вращения между соседними пара­ми оснований вдоль спирали до 34,6°, так что отрезок спирали, в пределах которого совершается полный виток на 360°, стал несколько длиннее.

Особенно важно, что значение 10,4 является средним для ДНК как целой молекулы при определенных усло­виях. Изменение условий или даже последовательности отдельных оснований может привести к большему или меньшему закручиванию спиральной структуры в со­ответствующих участках.

Действительно, методом рентгеноструктурного анализа было показано, что молеку­ла, состоящая из 12 пар оснований, содержит 10,1 пары оснований на виток, что обеспечивается слабым сдвигом каждой пары оснований, при котором улучшаются меж­плоскостные (стэкинг) взаимодействия между основания­ми, по сравнению с первоначальной моделью.

Ввиду таких вариаций идея о существовании един­ственной структуры двуспиральной ДНК сменилась пред­ставлением, допускающим наличие семейства структур, каждая из которых имеет характерный тип, но проявляет различия по главным параметрам - n (число нуклеотидов на виток) и h (расстояние между соседними повторяющи­мися элементами). Вариации обусловлены изменением вращения отдельных групп вокруг связей, обладающих свободой вращения. В пределах каждого семейства струк­тур параметры могут слабо варьировать. Например, для В-ДНК значение n может составлять от 10,0 до 10,6.

В течение долгого времени были известны три струк­турные формы ДНК, способные к взаимопревращениям при изменении соответствующих условий. В-форма спирали, для которой Уотсон и Крик по­строили свою модель, характерна для волокон ДНК при очень высокой относительной влажности (92%) и в рас­творах низкой ионной силы. Считают, что именно в та­кой форме ДНК обычно находится в живой клетке.

А-форма обнаружена в волокнах ДНК при 75% влажности и нуждается в присутствии ионов натрия, калия или цезия, несущих противоположный заряд. Основания, располагавшиеся строго перпендикулярно оси спирали в В-форме, в А-форме наклонены по отношению к оси спирали, и их число на виток больше. А-форма интересна с биологической точки зрения, так как ее конформация очевидно, близка к структуре гибридов ДНК-РНК и двуспиральных участков РНК (обсуждается далее). Причина этого заключается в том, что 2'-гидроксильная группа мешает ДНК принять В-форму.

С-форма образуется, когда ДНК находится при 66% влажности в присутствии ионов лития. У нее меньше пар оснований на виток, чем у В-ДНК.

В этих трех формах могут находиться все ДНК неза­висимо от их нуклеотидной последовательности. Следую­щие формы характерны только для молекул ДНК с опре­деленными особенностями в составе пар оснований.

D-форма и Е-форма (возможно, крайние варианты одной и той же формы) имеют наименьшее число пар на виток (8 и 7,5) и обнаружены только в определенных мо­лекулах ДНК, не содержащих гуанина.

Z-форма представляет собой наиболее резкий кон­траст с классическим структурным семейством. Эта фор­ма левоспиральная, тогда как все остальные - правоспиральные. Она имеет наибольшее число пар на виток, т.е. менее скрученная и более тонкая. Свое название форма получила из-за зигзагообразной (zigzag) линии, которую образует сахарофосфатный остов вдоль спирали. В отли­чие от этого остов В-формы ДНК образует плавно изгибающуюся линию, что хорошо видно на рис., где сравниваются В- и Z-формы ДНК.

Z-форма двойной спирали найдена в полимерах, обра­зованных чередующимися пурин-пиримидиновыми после­довательностями. Два исследованных полимера состояли из многократно повторенных динуклеотидных пар: poly-d (GC/CG) и poly-d (AC/TG). Буква «d» указывает, что это дезоксиформы, т.е. что это ДНК, а не РНК. Верхний и нижний ряды букв соответствуют двум цепям ДНК.

 Z-форма существует только при очень высоких концен­трациях соли (что объясняется необходимостью противо­стоять повышенному электростатическому отталкиванию между нуклеотидами, сжатыми из-за уменьшения диаме­тра двойной спирали Z-ДНК).

Вполне возможно, что Z-форма ДНК имеет опреде­ленное биологическое значение. Об этом свидетельствуют следующие данные: замена остатка С в полимере poly-d(GC/CG) и poly-d на 5-метилцитозин значительно повышает стабильность Z-ДНК при низкой концентрации соли. Единственное различие между 5-Ме-С и С заклю­чается в наличии метильной группы при С-5. Эта моди­фикация цитозина происходит in vivo в результате метилирования динуклеотидной последовательности GC/CG в некоторых участках ДНК. Отсюда вытекает, что Z-ДНК может существовать in vivo при подходящих ус­ловиях, т.е. когда последовательность соответствующего состава окажется в условиях, способствующих образова­нию Z-формы.

До сих пор мы рассматривали ДНК как структуру со­вершенно изолированную. В действительности она связа­на с белками, которые могут оказывать значительное влияние на возможность перехода из В-формы в Z-форму. Например, ДНК, связанная с гистонами (основные хромосомные белки эукариотического ядра), не переходит из одной формы в другую в тех условиях, когда это на­блюдают у свободной ДНК. Таким образом, одним из условий, необходимых для образования Z-ДНК in vivo, по-видимому, является присутствие особых белков, ста­билизирующих ее структуру.

Является ли Z-ДНК единственной левосторонней фор­мой двойной спирали? Модели для левосторонних ва­риантов традиционных А-, В- и С-форм построены так, что, возможно, они и существуют. Следует помнить, что все эти формы сохраняют самую существенную в биоло­гическом смысле особенность двойной спирали: комплементарность спаривания оснований, определяющую специфичность соединения цепей.

При построении моделей каждую форму ДНК рас­сматривают независимо как конструкцию, в которой на­ходится вся молекула в определенных условиях. Но вряд ли это действительно имеет место in vivo. Большинство клеточной ДНК находится, по-видимому, в В-форме с определенными модификациями параметров спирали, варьирующими локально. И только отдельные короткие участки спирали переходят в другие формы.

          А-ДНК  В -ДНК       Z-ДНК

Рис. Нуклеиновые кислоты могут образовывать несколько типов двойной спирали.

                   

           А-ДНК         В-ДНК         Z-ДНК

Таким образом, ДНК может существовать в виде структурных семейств нескольких типов, в зависимости от концентрации ионов и нуклеотидного состава молекулы. Общие свой­ства этих форм суммированы в табл. 1.

 

Тип спирали Число пар оснований на виток Угол вращения1 одной пары, градусы Расстояние между парами оснований, А Диаметр спирали, А
А 11 + 32,7 2,56 23
В 10 + 36,0 3,38 19
С 9, 3 + 38,6 3,32 19
Z 12 -30,0 3,71 18

1 Угол вращения показан знаком ( + ) в случае правосторонней спирали и знаком (—) в случае левосторонней спирали.

Репликация ДНК

 

Способность к репликации (удвоению) ДНК определяет ее уникальные свойства по хранению и передаче наследственной информации.

Принцип репликации ДНК состоит в том, что каждая из двух полинуклеотидных нитей молекулы ДНК служит в качестве программы (матрицы) для синтеза новой (комплементарной) нити. В результате на основе одной двухцепочечной молекулы образуются две одинаковые двухцепочечные молекулы, в каждой из которых одна цепочка является старой, а другая - новой (вновь синтезированной). Такой принцип репликации ДНК был назван полуконсервативным (рис.).

Рис. Принцип полуконсервативной репликации ДНК

В соответствии с этим принципом нуклеотидная последовательность матричной (родительской) нити считывается в направлении 3'→ 5', тогда как синтез новой (дочерней) нити идет в направлении 5' → 3'. Поскольку две комплементарные цепочки родительской молекулы ДНК являются антипараллельными, то синтез новой полинуклеотидной цепочки на каждой из них идет в противоположном направлении.

Механизм репликации ДНК является достаточно сложным и, различается в случае организмов, содержащих относительно небольшие по размерам молекулы ДНК в замкнутой (кольцевой) форме (многие вирусы и бактерии), и эукариот, клетки которых имеют молекулы огромных размеров, находящиеся в линейной (незамкнутой) форме.

У прокариотов кольцевая молекула ДНК представляет собой одну структурную единицу репликации (репликон), имеющую единственную точку начала (инициации) репликации (О-пункт, coстоящий примерно из 300 нуклеотидов), в которой начинается процесс расхождения (расплетания) двух нитей родительской молекулы и матричного синтеза комплементарных копий (реплик) дочерней ДНК.

Сайт 0-репликации (ориджин репликации, сайт инициации репликации, точка инициации репликации)

 Этот процесс продолжается непрерывно по длине копируемой структуры и заканчивается в этом же репликоне образованием двух молекул «полуконсервативного» типа.

 

 

А- клеточная стенка бактерии; В –мембрана бактериальной клетки; С- жгутики;   D-цитоплазма;                         F- энзим; Е – исходная ДНК; G- новая ДНК; О - место начала репликации.

 

В больших линейных молекулах ДНК эукариот имеется много точек начала репликации и соответствующих им репликонов (от нескольких сотен до десятков тысяч), т. е. такая ДНК является полирепликонной.

При рассмотрении современных представлений о механизме репликации ДНК эукариот можно условно выделить три последовательных этапа этого процесса, происходящего в репликоне, в каждом из которых принимают участие те или иные белки (ферменты).

Первый этап связан с быстрым раскручиванием двух полинуклеотидных нитей спирализованной молекулы ДНК на определенном ее участке (в границах работающего репликона) и с их разделением путем разрушения водородных связей между парами комплементарных оснований. При этом образуются два одноцепочечных фрагмента родительской молекулы, каждый из которых может выступать в роли матрицы для синтеза комплементарной (дочерней) нити. Этот этап инициируется в соответствующей точке начала репликации и обеспечивается комплексным участием нескольких различных белков. В результате их действия формируется T-образная структура, названная вилкой репликации, в которой две родительские цепочки ДНК уже отделены друг от друга (рис.). Образовавшаяся вилка репликации быстро продвигается вдоль двойной спирали родительской молекулы ДНК благодаря активности «расплетающего» фермента ДНК-хеликазы и при участии группы дестабилизирующих белков.

Рис. Схема образования репликационной вилки ДНК

Эти белки обладают способностью связываться только с одноцепочечными (уже раскрученными и разделенными) участками молекулы, препятствуя возникновению на них вторичных складчатых образований («шпилек») за счет случайных соединений между комплементарными нуклеотидами однонитевой структуры. Следовательно, они способствуют выпрямлению однонитевых участков молекулы, что необходимо для нормального выполнения ими матричных функций.

Быстрое расплетание ДНК с помощью хеликазы без дополнительного вращения нитей по отношению друг к другу должно приводить к образованию новых витков (узлов) на участках родительской молекулы перед движущейся вилкой репликации, создающих повышенное топологическое напряжение на этих участках. Такое напряжение устраняется еще одним белком (ДНК-топоизомеразой), который, перемещаясь вдоль двухспиральной родительской ДНК перед вилкой репликации, вызывает временные разрывы в одной из цепочек молекулы, разрушая фосфодиэфирные связи и присоединяясь к разорванному концу. Возникший разрыв обеспечивает последующее вращение нити двойной спирали, что, в свою очередь, приводит к расплетанию образующихся супервитков (узлов). Поскольку разрыв полинуклеотидной цепочки, вызванный топоизомеразой, носит обратимый характер, то разорванные концы быстро воссоединяются сразу после разрушения комплекса этого белка с разорванным концом.

На втором этапе происходит матричный синтез новых (дочерних) полинуклеотидных цепей на основе известного принципа комплементарного соответствия нуклеотидов старой (матричной) и новой цепей. Этот процесс осуществляется путем соединения (полимеризации) нуклеотидов новой цепи с помощью ферментов ДНК-полимераз нескольких типов. Следует отметить, что ни одна из известных сегодня ДНК-полимераз не способна начать синтез нового полинуклеотида путем простого соединения двух свободных нуклеотидов. Инициация этого процесса требует наличия свободного 3'-конца какой-либо полинуклеотидной цепочки ДНК (либо РНК), которая соединена с другой (комплементарной) цепочкой ДНК. Иными словами, ДНК-полимераза способна лишь добавлять новые нуклеотиды к свободному 3'-концу имеющегося полинуклеотида и, следовательно, способна наращивать эту структуру только в направлении 5'→3'.

С учетом указанного обстоятельства становится понятным асимметричный характер функционирования вилки репликации (рис. 1.9 и 1.10). Как видно из приведенных схем, на одной из матричных нитей вилки 3'→5') идет относительно быстрый и непрерывный синтез дочерней нити (ведущей, или лидирующей, цепочки) в направлении 5' →3', тогда как на другой матрице (5'→ 3') идет более медленный и прерывистый синтез отстающей цепочки короткими фрагментами (100-200 нуклеотидов), получившими название фрагментов Оказаки, и также в направлении 5'→ 3'.

Синтез ведущей и отстающей цепочек осуществляют ДНК-полимеразы разных типов. Свободный 3'-конец, необходимый для начала синтеза фрагмента Оказаки, обеспечивается короткой нитью РНК (около 10 нуклеотидов), получившей название РНК-праймера (РНК-затравки), которая синтезируется с помощью фермента РНК-праймазы. РНК-праймеры могут комплементарно спариваться сразу с несколькими участками на матричной нити ДНК, создавая условия для одновременного синтеза нескольких фрагментов Оказаки при участии ДНК-полимеразы III (рис. 1.10). Когда синтезированный фрагмент Оказаки достигает 5'-конца очередного РНК-праймера, начинает проявляться 5'-экзонуклеазная активность ДНК-полимеразы I, которая последовательно выщепляет нуклеотиды РНК в направлении 5'→ 3'. При этом удаляемый РНК-праймер замещается соответствующим фрагментом ДНК.

Последний (третий) этап рассматриваемого процесса связан с действием фермента ДНК-лигазы, который соединяет 3'-конец одного из фрагментов Оказаки с 5'-концом соседнего фрагмента с образованием фосфодиэфирной связи, восстанавливая таким образом первичную структуру отстающей цепочки, синтезируемой в функционирующем репликоне. Дальнейшая спирализация появившегося «полуконсервативного» участка ДНК (закручивание спирали) происходит с участием ДНК-гиразы и некоторых других белков.

Рис. Синтез ведущей и отстающей цепей ДНК в области репликационной вилки

 

Полирепликонный принцип организации молекулы ДНК различных эукариот, в том числе человека, обеспечивает возможность последовательного копирования генетического материала этих организмов без одновременного раскручивания (деспирализации) всей огромной по размерам и сложно упакованной молекулы, что значительно сокращает время ее репликации. Иными словами, в тот или иной момент времени в одной группе репликонов молекулы процесс копирования может быть уже завершен объединением и спирализацией соответствующих участков, тогда как в другой группе он только начинается расплетанием двухнитевых структур.

Схематическое изображение процесса репликации, цифрами обозначены: 1- запаздывающая цепь, 2 - цепь-лидер, 3- ДНК-полимераза (Polα), 4- ДНК лигаза, 5- РНК-праймер, 6- ДНК- праймаза, 7- фрагмент Оказаки, 8- ДНК-полимераза (Polδ), 9- хеликаза, 10- одиночная цепь со связанными белками, 11- топоизомераза

Ферменты, участвующие в репликации ДНК эукариот:

1.ДНК-хеликаза и дестабилизирующие белки; они расплетают двойную спираль родительской ДНК и формируют репликационную вилку.

2.ДНК-полимеразы, которые катализируют синтез полинуклеотидной цепи ДНК в направлении 3'-5, копируя в репликационной вилке матрицу с высокой степенью точности. Поскольку две цепи двойной спирали ДНК антипараллельны, в направлении 5'-3' непрерывно синтезируется лишь одна из двух цепей - ведущая; другая цепь - отстающая, синтезируется в виде коротких фрагментов Оказаки. ДНК-полимераза способна к исправлению собственных ошибок, но не может самостоятельно начать синтез новой цепи.

3.ДНК-праймаза, которая катализирует короткие молекулы РНК-затравки. Впоследствии фрагменты РНК удаляются - их заменяет ДНК.

4.Теломераза, заканчивающая построение недорепликацированых 3'-концов линейных молекул ДНК.

5. ДНК-топоизомеразы, помогающие решить проблемы кручения и спутывания спирали ДНК.

6. Инициаторные белки, связывающиеся в точке начала репликации и
способствующие образованию нового репликационного глазка с одной или двумя вилками. В каждой из вилок вслед за инициаторными белками к расплетенной ДНК сначала присоединяется белковый комплекс, состоящий из ДНК-хеликазы и ДНК-праймазы (праймосома). Затем к праймосоме добавляются другие белки и возникает «репликационная машина», которая и осуществляет синтез ДНК.

Другие механизмы репликации

Репликация у вирусов имеющих одноцепную ДНК имеет особенности. В клетке хозяина на такой молекуле, называемой (+) цепью синтезируется комплементарный ему (-) цепь, таким образом образуется двухцепочечная молекула ДНК. (-) цепь затем служит матрицей для синтеза новых (+) цепей, которые встраиваются в вирусные частицы. В процессе участвуют ферменты вирусов и ферменты клетки-хозяина.

Репликация РНК происходит у организмов, геном которых кодирует эта нуклеиновая кислота - некоторые типы вирусов и вироиды. Процесс происходит в клетках хозяина, которые были инфицированы этими организмами. При этом также синтезируются (-) цепи и РНК проходит двухцепную стадию.

 

Базисные термины и понятия: ведущая (лидирующая) цепь; вилка репликации; хеликаза; гираза; дестабилизирующие белки; ДНК-полимераза; дочерняя нить ДНК; комплементарность; лигаза; матричная (родительская) нить ДНК; матричный синтез; одноцепочечный участок ДНК; отстающая цепь; полимеризация; полуконсервативный принцип; реплика; репликация; репликон; РНК-праймаза; РНК-праймер (РНК-затравка); спирализация ДНК; топоизомераза; точка начала репликации; фрагмент Оказаки; экзонуклеазная активность; 3'-конец цепочки; 5'-конец цепочки, репарация ДНК.

Изменения структуры ДНК

Естественным процессом является метилирование ДНК, которое оказывает влияние на ее функциональную активность, т.е. транскрипцию генов. Так, участки гетерохроматина (отсутствие или низкий уровень транскрипции генов) коррелируют с метилированием цитозина. Например, метилирование цитозина с образованием 5-метилцитозина важно для инактивации Х-хромосомы.

Средний уровень метилирования отличается у разных организмов: у нематоды Caenorhabditis elegans метилирование цитозина не наблюдается, а у позвоночных обнаружен высокий уровень метилирования - до 1 %.

Несмотря на биологическую роль, 5-метилцитозин может спонтанно утрачивать аминную группу (деаминироваться), превращаясь в тимин, поэтому метилированные цитозины являются источником повышенного числа мутаций. Другие модификации оснований включают метилирование  аденина у бактерий и гликозилирование урацила с образованием «J-основания» в кинетопластах.

Суперспирализация

До сих пор мы говорили о ДНК как о линейной двух-цепочечной молекуле. Однако ДНК может находиться в виде кольцевой молекулы или чего-то подобного. У мелких вирусов геном действительно представляет со­бой кольцевую ДНК, в которой обе цепи двойной спира­ли замкнуты в непрерывное кольцо. В бактериальном и эукариотическом геномах ДНК может находиться в ви­де больших петель. При этом важно следующее: каждая петля удерживается у основания таким образом, что опять не образуется свободных концов. Значе­ние этой формы двойной спирали состоит в том, что она накладывает дополнительные ограничения на структуру.

Если взяться за концы верёвки и начать скручивать их в разные стороны, она становится короче и на верёвке образуются «супервитки». Так же может быть суперскручена и ДНК. Если двухцепочечную ДНК скрутить вокруг оси двой­ной спирали, то образуются супервитки. В качестве аналогии обычно рассматривают полоску резины, скру­ченную вокруг своей оси и образующую напряженную структуру, в которой резиновая полоска (двойная спи­раль) местами образует крестообразные структуры. При этом возникают конформации, изображенные на рис.5. В таком скрученном состоянии структура остается только в том случае, если нет свободных концов и раскручивание невозможно.

В обычном состоянии цепочка ДНК делает один оборот на каждые 10,4 основания, но в суперскрученном состоянии спираль может быть свёрнута туже или расплетена. Выделяют два типа суперскручивания: положительное — в направлении нормальных витков, при котором основания расположены ближе друг к другу; и отрицательное — в противоположном направлении. В природе молекулы ДНК обычно находятся в отрицательном суперскручивании, которое вносится ферментами — топоизомеразами. Эти ферменты удаляют дополнительное скручивание, возникающее в ДНК в результате транскрипции и репликации.

Для резиновой полоски безразлично, в каком напра­влении мы ее закрутим с образованием супервитков. (Оба края резиновой полоски одинаковы.) Однако двойная спираль сама по себе является скрученной структурой (что видно из переплетения двух цепей), поэтому ее реакция на скручи­вание зависит от того, в какую сторону оно происходит.

Отрицательные супервитки закручивают ДНК вокруг ее оси против часовой стрелки в направлении, обратном правосторонней двойной спирали. Это в принципе озна­чает, что напряжение скручивания можно частично осла­бить, регулируя саму структуру двойной спирали. При этом может получиться форма с меньшим углом враще­ния на пару оснований, а местами может даже нарушить­ся спаривание оснований. ДНК с отрицательными супер­витками называют недокрученной (underwound). Крайним случаем служит локальный переход правосторонней спи­рали в левостороннюю.

Не следует забывать, что такие события не происхо­дят спонтанно в ДНК, а могут случаться только под влиянием внешних условий. Для простоты можно счи­тать, что в результате суперспирализации молекула при­обретает избыток энергии. Таким образом, если нужно произвести некоторые изменения в структуре ДНК, на­пример удержать какой-то участок в одноцепочечном со­стоянии в результате связывания его с белками или пере­вести его в какую-либо иную форму, например в Z-форму, на это потребуется меньше энергии, если ДНК находится в состоянии отрицательной суперспирали. Так, степень спирализации может влиять на равновесие между разными структурами. Действительно, было обнаружено, что отрицательно суперспирализованная ДНК проявляет склонность к изменениям такого рода. Крайним случаем раскручивания правосторонней двойной спирали является ее превращение в левостороннюю спираль. Именно это происходит при переходе В-формы в Z-форму. Отрицательно суперспирализованная ДНК более предрасположена к переходу в Z-форму, чем релаксированная ДНК.

А                        

                      Б                              В                                                                                         

 

Рис.5. При суперспирализации двуспиральная молекула ДНК закручивается сама на себя. Разделение оснований снимает отри­цательную суперспирализацию (сверхскручи­вание): А. От­рицательно суперспирализованная ДНК; Б. Кольцевая ДНК без суперспирализации; В. Отри­цательная суперспирализация может привести к разделению цепей.

 

Повреждение ДНК

ДНК может повреждаться разнообразными мутагенами, к которым относятся окисляющие и алкилирующие вещества, а также высокоэнергетическая электромагнитная радиация — ультрафиолетовое и рентгеновское излучение. Тип повреждения ДНК зависит от типа мутагена. Например, ультрафиолет повреждает ДНК путём образования в ней димеров тимина, которые возникают при образовании ковалентных связей между соседними основаниями.

Оксиданты, такие как свободные радикалы или перекись водорода, приводят к нескольким типам повреждения ДНК, включая модификации оснований, в особенности гуанозина, а также двухцепочечные разрывы в ДНК. По некоторым оценкам, в каждой клетке человека окисляющими соединениями ежедневно повреждается порядка 500 оснований. Среди разных типов повреждений наиболее опасные — это двухцепочечные разрывы, потому что они трудно репарируются и могут привести к потерям участков хромосом (делециям) и транслокациям.

Многие молекулы мутагенов вставляются (интеркалируют) между двумя соседними парами оснований. Большинство этих соединений, например, этидий, даунорубицин, доксорубицин и талидомид имеют ароматическую структуру. Для того чтобы интеркалирующее соединение могло поместиться между основаниями, они должны разойтись, расплетая и нарушая структуру двойной спирали. Эти изменения в структуре ДНК мешают транскрипции и репликации, вызывая мутации. Поэтому интеркалирующие соединения часто являются канцерогенами, наиболее известные из которых — бензопирен, акридины, афлатоксин и бромистый этидий. Несмотря на эти негативные свойства, в силу их способности подавлять транскрипцию и репликацию ДНК, интеркалирующие соединения используются в химиотерапии для подавления быстро растущих клеток рака.

Интеркалированное химическое соединение, которое находится в середине спирали — бензопирен, основной мутаген табачного дыма.

 

Репарация ДНК

 


Дата добавления: 2022-01-22; просмотров: 24; Мы поможем в написании вашей работы!

Поделиться с друзьями:




Мы поможем в написании ваших работ!