Наследование признаков, сцепленных с полом

Тема: Явление сцепленного наследования и генетика пола. Наследственные болезни человека.

  В 1906 году У. Бэтсон и Р. Пеннет, проводя скрещивание растений душистого горошка и анализируя наследование формы пыльцы и окраски цветков, обнаружили, что эти признаки не дают независимого распределения в потомстве, гибриды всегда повторяли признаки родительских форм. Стало ясно, что не для всех признаков характерно независимое распределение в потомстве и свободное комбинирование.

Каждый организм имеет огромное количество признаков, а число хромосом невелико. Следовательно, каждая хромосома несет не один ген, а целую группу генов, отвечающих за развитие разных признаков. Изучением наследования признаков, гены которых локализованы в одной хромосоме, занимался Т. Морган. Если Мендель проводил свои опыты на горохе, то для Моргана основным объектом стала плодовая мушка дрозофила.

Дрозофила каждые две недели при температуре 25 °С дает многочисленное потомство. Самец и самка внешне хорошо различимы — у самца брюшко меньше и темнее. Они имеют всего 8 хромосом в диплоидном наборе, достаточно легко размножаются в пробирках на недорогой питательной среде.

Скрещивая мушку дрозофилу с серым телом и нормальными крыльями с мушкой, имеющей темную окраску тела и зачаточные крылья, в первом поколении Морган получал гибриды, имеющие серое тело и нормальные крылья (ген, определяющий серую окраску брюшка, доминирует над темной окраской, а ген, обусловливающий развитие нормальных крыльев, — над геном недоразвитых). При проведении анализирующего скрещивания самки F1 с самцом, имевшим рецессивные признаки, теоретически ожидалось получить потомство с комбинациями этих признаков в соотношении 1:1:1:1. Однако в потомстве явно преобладали особи с признаками родительских форм (41,5% — серые длиннокрылые и 41,5% — черные с зачаточными крыльями), и лишь незначительная часть мушек имела иное, чем у родителей, сочетание признаков (8,5% — черные длиннокрылые и 8,5% — серые с зачаточными крыльями). Такие результаты могли быть получены только в том случае, если гены, отвечающие за окраску тела и форму крыльев, находятся в одной хромосоме.

1 — некроссоверные гаметы; 2 — кроссоверные гаметы.

Если гены окраски тела и формы крыльев локализованы в одной хромосоме, то при данном скрещивании должны были получиться две группы особей, повторяющие признаки родительских форм, так как материнский организм должен образовывать гаметы только двух типов — АВ и аb, а отцовский — один тип — аb. Следовательно, в потомстве должны образовываться две группы особей, имеющих генотип ААВВ и ааbb. Однако в потомстве появляются особи (пусть и в незначительном количестве) с перекомбинированными признаками, то есть имеющие генотип Ааbb и ааВb. Для того, чтобы объяснить это, необходимо вспомнить механизм образования половых клеток — мейоз. В профазе первого мейотического деления гомологичные хромосомы конъюгируют, и в этот момент между ними может произойти обмен участками. В результате кроссинговера в некоторых клетках происходит обмен участками хромосом между генами А и В, появляются гаметы Аb и аВ, и, как следствие, в потомстве образуются четыре группы фенотипов, как при свободном комбинировании генов. Но, поскольку кроссинговер происходит при образовании небольшой части гамет, числовое соотношение фенотипов не соответствует соотношению 1:1:1:1.

Группа сцепления — гены, локализованные в одной хромосоме и наследующиеся совместно. Количество групп сцепления соответствует гаплоидному набору хромосом.

Сцепленное наследование — наследование признаков, гены которых локализованы в одной хромосоме. Сила сцепления между генами зависит от расстояния между ними: чем дальше гены располагаются друг от друга, тем выше частота кроссинговера и наоборот.

Полное сцепление — разновидность сцепленного наследования, при которой гены анализируемых признаков располагаются так близко друг к другу, что кроссинговер между ними становится невозможным.

Неполное сцепление — разновидность сцепленного наследования, при которой гены анализируемых признаков располагаются на некотором расстоянии друг от друга, что делает возможным кроссинговер между ними.

Независимое наследование — наследование признаков, гены которых локализованы в разных парах гомологичных хромосом.

Некроссоверные гаметы — гаметы, в процессе образования которых кроссинговер не произошел.

Образуются гаметы:

Кроссоверные гаметы — гаметы, в процессе образования которых произошел кроссинговер. Как правило кроссоверные гаметы составляют небольшую часть от всего количества гамет.

Образуются гаметы:

Нерекомбинанты — гибридные особи, у которых такое же сочетание признаков, как и у родителей.

Рекомбинанты — гибридные особи, имеющие иное сочетание признаков, чем у родителей.

Расстояние между генами измеряется в морганидах — условных единицах, соответствующих проценту кроссоверных гамет или проценту рекомбинантов. Например, расстояние между генами серой окраски тела и длинных крыльев (также черной окраски тела и зачаточных крыльев) у дрозофилы равно 17%, или 17 морганидам.

У дигетерозигот доминантные гены могут располагаться или в одной хромосоме (цис-фаза), или в разных (транс-фаза).

1 — Механизм цис-фазы (некроссоверные гаметы); 2 — механизм транс-фазы (некроссоверные гаметы).

 

Результатом исследований Т. Моргана стало создание им хромосомной теории наследственности:

  1. гены располагаются в хромосомах; различные хромосомы содержат неодинаковое число генов; набор генов каждой из негомологичных хромосом уникален;
  2. каждый ген имеет определенное место (локус) в хромосоме; в идентичных локусах гомологичных хромосом находятся аллельные гены;
  3. гены расположены в хромосомах в определенной линейной последовательности;
  4. гены, локализованные в одной хромосоме, наследуются совместно, образуя группу сцепления; число групп сцепления равно гаплоидному набору хромосом и постоянно для каждого вида организмов;
  5. сцепление генов может нарушаться в процессе кроссинговера, что приводит к образованию рекомбинантных хромосом; частота кроссинговера зависит от расстояния между генами: чем больше расстояние, тем больше величина кроссинговера;
  6. каждый вид имеет характерный только для него набор хромосом — кариотип.

Хромосомное определение пола

Большинство животных являются раздельнополыми организмами. Пол можно рассматривать как совокупность признаков и структур, обеспечивающих способ воспроизводства потомства и передачу наследственной информации. Пол чаще всего определяется в момент оплодотворения, то есть в определении пола главную роль играет кариотип зиготы. Кариотип каждого организма содержит хромосомы, одинаковые у обоих полов, — аутосомы, и хромосомы, по которым женский и мужской пол отличаются друг от друга, — половые хромосомы. У человека «женскими» половыми хромосомами являются две Х-хромосомы. При образовании гамет каждая яйцеклетка получает одну из Х-хромосом. Пол, у которого образуются гаметы одного типа, несущие Х-хромосому, называется гомогаметным. У человека женский пол является гомогаметным. «Мужские» половые хромосомы у человека — Х-хромосома и Y-хромосома. При образовании гамет половина сперматозоидов получает Х-хромосому, другая половина — Y-хромосому. Пол, у которого образуются гаметы разного типа, называется гетерогаметным. У человека мужской пол — гетерогаметный. Если образуется зигота, несущая две Х-хромосомы, то из нее будет формироваться женский организм, если Х-хромосому и Y-хромосому — мужской.

У животных можно выделить следующие четыре типа хромосомного определения пола.

  1. Женский пол — гомогаметен (ХХ), мужской — гетерогаметен (ХY) (млекопитающие, в частности, человек, дрозофила).

Генетическая схема хромосомного определения пола у человека:

Р ♀46, XX × ♂46, XY
Типы гамет 23, X   23, X 23, Y
F 46, XX женские особи, 50%   46, XY мужские особи, 50%

 

Генетическая схема хромосомного определения пола у дрозофилы:

Р ♀8, XX × ♂8, XY
Типы гамет 4, X   4, X 4, Y
F 8, XX женские особи, 50%   8, XY мужские особи, 50%

 

  1. Женский пол — гомогаметен (ХХ), мужской — гетерогаметен (Х0) (прямокрылые).

Генетическая схема хромосомного определения пола у пустынной саранчи:

Р ♀24, XX × ♂23, X0
Типы гамет 12, X   12, X 11, 0
F 24, XX женские особи, 50%   23, X0 мужские особи, 50%

 

  1. Женский пол — гетерогаметен (ХY), мужской — гомогаметен (ХХ) (птицы, пресмыкающиеся).

Генетическая схема хромосомного определения пола у голубя:

Р ♀80, XY × ♂80, XX
Типы гамет 40, X 40, Y   40, X
F 80, XY женские особи, 50%   80, XX мужские особи, 50%

 

  1. Женский пол — гетерогаметен (Х0), мужской — гомогаметен (ХХ) (некоторые виды насекомых).

Генетическая схема хромосомного определения пола у моли:

Р ♀61, X0 × ♂62, XX
Типы гамет 31, X 30, Y   31, X
F 61, X0 женские особи, 50%   62, XX мужские особи, 50%

 

Наследование признаков, сцепленных с полом

  Установлено, что в половых хромосомах находятся гены, отвечающие не только за развитие половых, но и за формирование неполовых признаков (свертываемость крови, цвет зубной эмали, чувствительность к красному и зеленому цвету и т.д.). Наследование неполовых признаков, гены которых локализованы в Х- или Y-хромосомах, называют наследованием, сцепленным с полом. Изучением наследования генов, локализованных в половых хромосомах, занимался Т. Морган.

У дрозофилы красный цвет глаз доминирует над белым.

Реципрокное скрещивание — два скрещивания, которые характеризуются взаимно противоположным сочетанием анализируемого признака и пола у форм, принимающих участие в этом скрещивании. Например, если в первом скрещивании самка имела доминантный признак, а самец — рецессивный, то во втором скрещивании самка должна иметь рецессивный признак, а самец — доминантный. Проводя реципрокное скрещивание, Т. Морган получил следующие результаты. При скрещивании красноглазых самок с белоглазыми самцами в первом поколении все потомство оказывалось красноглазым. Если скрестить между собой гибридов F1, то во втором поколении все самки оказываются красноглазыми, а среди самцов — половина белоглазых и половина красноглазых. Если же скрестить между собой белоглазых самок и красноглазых самцов, то в первом поколении все самки оказываются красноглазыми, а самцы белоглазыми. В F2 половина самок и самцов — красноглазые, половина — белоглазые.

Объяснить полученные результаты наблюдаемого расщепления по окраске глаз Т. Морган смог, только предположив, что ген, отвечающий за окраску глаз, локализован в Х-хромосоме (ХА — красный цвет глаз, Ха — белый цвет глаз), а Y-хромосома таких генов не содержит.

Р ♀XAXA красноглазые × ♂XaY белоглазые
Типы гамет XA   Xa Y
F1 XAXa ♀ красноглазые 50%   XАY ♂ красноглазые 50%

 

Р ♀XAXa красноглазые ×

XAY
красноглазые

Типы гамет XA Xa  

XA Y

F2 XAXA XAXa ♀ красноглазые 50%   XАY ♂ красноглазые 25% XaY ♂ белоглазые 25%

 

Р ♀XaXa белоглазые × ♂XAY красноглазые
Типы гамет Xa   XA Y
F1 XAXa ♀ красноглазые 50%   XaY ♂ белоглазые 50%

 

Р

XAXa
красноглазые

×

XaY
белоглазые

Типы гамет

XA Xa

 

Xa Y

F2 XAXA ♀ красноглазые 25% XaXa ♀ белоглазые 25%   XАY ♂ красноглазые 25% XaY ♂ белоглазые 25%
           

 

Схема половых хромосом человека и сцепленных с ними генов:
1 — Х-хромосома; 2 — Y-хромосома.

У людей мужчина получает Х-хромосому от матери, Y-хромосому — от отца. Женщина получает одну Х-хромосому от матери, другую Х-хромосому от отца. Х-хромосома — средняя субметацентрическая, Y-хромосома — мелкая акроцентрическая; Х-хромосома и Y-хромосома имеют не только разные размеры, строение, но и по большей части несут разные наборы генов. В зависимости от генного состава в половых хромосомах человека можно выделить следующие участки: 1) негомологичный участок Х-хромосомы (с генами, имеющимися только в Х-хромосоме); 2) гомологичный участок Х-хромосомы и Y-хромосомы (с генами, имеющимися как в Х-хромосоме, так и в Y-хромосоме); 3) негомологичный участок Y-хромосомы (с генами, имеющимися только в Y-хромосоме). В зависимости от локализации гена в свою очередь выделяют следующие типы наследования.

 

Тип наследования Локализация генов Примеры
Х-сцепленный рецессивный Негомологичный участок Х-хромосомы Гемофилия, разные формы цветовой слепоты (протанопия, дейтеронопия), отсутствие потовых желез, некоторые формы мышечной дистрофии и пр.
Х-сцепленный доминантный Негомологичный участок Х-хромосомы Коричневый цвет зубной эмали, витамин D устойчивый рахит и пр.
Х-Y-сцепленный (частично сцепленный с полом) Гомологичный участок Х- и Y-хромосом Синдром Альпорта, общая цветовая слепота
Y-сцепленный Негомологичный участок Y-хромосомы Перепончатость пальцев ног, гипертрихоз края ушной раковины

 

   

 Большинство генов, сцепленных с Х-хромосомой, отсутствуют в Y-хромосоме, поэтому эти гены (даже рецессивные) будут проявляться фенотипически, так как они представлены в генотипе в единственном числе. Такие гены получили название гемизиготных. Х-хромосома человека содержит ряд генов, рецессивные аллели которых определяют развитие тяжелых аномалий (гемофилия, дальтонизм и пр.). Эти аномалии чаще встречаются у мужчин (так как они гемизиготны), хотя носителем генов, обусловливающих эти аномалии, чаще бывает женщина. Например, если ХА — нормальная свертываемость крови, Ха — гемофилия и если женщина является носительницей гена гемофилии, то у фенотипически здоровых родителей может родиться сын-гемофилик:

Р ♀XAXa норм. сверт. крови ×

XAY
норм. сверт. крови

Типы гамет XA Xa  

XA Y

F2 XAXA XАXa ♀ норм. сверт. крови 50%   XАY ♂ норм. сверт. крови 25% XaY ♂ гемофилики 25%

 


Дата добавления: 2021-12-10; просмотров: 15; Мы поможем в написании вашей работы!

Поделиться с друзьями:




Мы поможем в написании ваших работ!