ЗНАКИ ДЛЯ ЗАКРЕПЛЕНИЯ ГЕОДЕЗИЧЕСКИХ СЕТЕЙ



Вариант 3

ИЗОБРАЖЕНИЕ ЗЕМНОЙ ПОВЕРХНОСТИ НА ПЛОСКОСТИ (ПЛАН, КАРТА, ПРОФИЛЬ)

Поверхность Земли изображают на плоскости в виде планов, карт, профилей.

При составлении планов сферическую поверхность Земли проецируют на горизонтальную плоскость и полученное изображение уменьшают до требуемого размера. Как правило, в геодезии применяют метод ортогонального проецирования (рис. 1.4). Сущность его состоит в том, что точки местности переносят на горизонтальную плоскость по отвесным линиям, параллельным друг другу и перпендикулярным горизонтальной плоскости. Например, точка А местности (перекресток дорог) проецируется на горизонтальную плоскость Н по отвесной линии Аа, точка В - по линии Вb и т. д., точки

 


Рис. 1.4. Ортогональное проецирование местности

а и b являются ортогональными проекциями точек А иВ местности на плоскости H.

Полученное на плоскости изображение участка земной поверхности уменьшают с сохранением подобия фигур. Такое уменьшенное изображение называется планом местности. Следовательно, план местности - это уменьшенное подобное изображение горизонтальной проекции участка поверхности Земли с находящимися на ней объектами.

Однако план нельзя составить на очень большую территорию, так как сферическая поверхность Земли не может быть развернута в плоскость без складок или разрывов. Изображение Земли на плоскости, уменьшенное и искаженное вследствие кривизны поверхности, называют картой.

Таким образом, и план, и карта - это уменьшенные изображения земной поверхности на плоскости. Различие между ними состоит в том, что при составлении карты проецирование производят с искажениями поверхности за счет влияния кривизны Земли, на плане изображение получают практически без искажения.

Профилем местности называется уменьшенное изображение вертикального разреза земной поверхности по заданному направлению. Как правило, разрез местности (рис. 1.5, а) представляет собой кривую линию ABC...G. На профиле (рис. 1.5, б) она строится в виде ломаной линии abc...g. Уровенную поверхность изображают прямой

 

 

 

 

2. Как выполняются основные поверки и юстировка теодолита

Поверка средств измерений (далее также – поверка) – совокупность операций, выполняемых аккредитованной метрологической службой с целью определения и подтверждения соответствия средств измерений (СИ) метрологическим требованиям (ГКИНП 17-195-99 – инструкция поверки). Так, определяются характеристики зрительной трубы – увеличение, поле зрения, разрешающая сила, яркость. Характеристики цилиндрического уровня – цена деления уровня, чувствительность и др. Основной метрологической характеристикой прибора является средняя квадратическая ошибка измеряемой величины – СКО (раздел 13). Для теодолитов серии Т30 существуют следующие метрологические характеристики: СКО измерения горизонтального угла, с – 20; СКО измерения вертикального угла, с – 45; коэффициент нитяного дальномера, % - 100±1; коллимационная ошибка, с – 60; место нуля вертикального круга, с – 120. Другие метрологические характеристики в этом курсе рассматриваться не будут в связи с тем, что данное учебное пособие предназначено для студентов не геодезических вузов.

Технологическая поверка геодезического СИ – совокупность операций, выполняемых исполнителем до начала и (или) в процессе геодезических работ с целью определения технических характеристик СИ, необходимых для подтверждения готовности СИ к измерениям.

Юстировка – есть совокупность действий с геодезическим прибором, направленных на устранение геометрических нарушений в приборе (СИ).

В теодолитах правильность их геометрии определяется в основном правильным расположением основных осей.

Перед поверкой предварительно приводят основную ось вращения теодолита в вертикальное положение, то есть горизонтируют прибор. Устанавливают уровень параллельно двум подъемным винтам. Вращая их одновременно в разные стороны, приводят пузырек цилиндрического уровня на середину. Затем поворачивают алидаду на 90°, то есть устанавливают уровень по направлению третьего винта и его вращением опять приводят пузырек в нульпункт (рис. 31).

 

Вариант 7

1. Какие знаки применяются для закрепления геодезических точек на местности?

ЗНАКИ ДЛЯ ЗАКРЕПЛЕНИЯ ГЕОДЕЗИЧЕСКИХ СЕТЕЙ

Точки геодезических сетей закрепляются на местности знаками. По местоположению знаки бывают грунтовые и стенные, заложенные в стены зданий и сооружений; металлические, железобетонные, деревянные, в виде откраски и т. д.; по назначению - постоянные, к которым относятся все знаки государственных геодезических сетей, и временные, устанавливаемые на период изысканий, строительства, реконструкции, наблюдений и т. д.

Постоянные знаки закрепляют подземными знаками - центрами. Конструкции центров обеспечивают их сохранность и неизменность положения в течение длительного периода времени. Как правило, подземный центр представляет собой бетонный монолит, закладываемый ниже глубины промерзания грунта и не в насыпной массив. У поверхности земли в монолите устанавливают чугунную марку, на которой наносят центр в виде креста или точки. Положению этого центра соответствуют координаты X и Y и во многих случаях отметки Н.

Для того чтобы с одного знака был виден другой (смежный), над подземными центрами устанавливают наружный знак в виде металлических или деревянных трех- или четырехгранных пирамид или сигналов.


Рис. 10.3. Наружный металлический сигнал над подземным центром плановой сети:
1 - фундаменты, 2 - центр, 3- сигнал, 4 - настил, 5 - столик, б - визирная цель

Пирамиды или сигналы имеют высоту 3...30 м и более. Геодезический сигнал 3 с подземным центром 2, столиком 5 для установки измерительных приборов и настила 4 для работы с него наблюдателя изображены на рис. 10.3. Верх сигнала или пирамиды заканчивается визирной целью б, на которую при измерении углов направляют зрительную трубу теодолита. На столик устанавливают также отражатель, если измеряют расстояния между пунктами светодальномером. Для спутниковых измерений сигналы и пирамиды строить не надо.

Как правило, пункты разбивочных сетей и сетей сгущения закрепляют подземными центрами, такими же как и пункты государственных сетей. Так как расстояния между этими пунктами сравнительно небольшие, оформления их наружными знаками не требуется. Иногда над ними устанавливают Г-образные металлические или деревянные вехи. В городах знаки оформляют в виде специальной надстройки на крышах зданий. Знаки могут закладывать в зданиях и сооружениях, в этом случае их называют стенными.

Государственные высотные сети всех классов закрепляют на местности грунтовыми реперами. Стенные реперы закрепляют в фундаментах устойчивых сооружений - водонапорных башен, капитальных зданий, каменных устоев мостов и т. д. В стенных реперах (рис. 10.4, а) высоту определяют для центра отверстия в сферической головке.

Временные знаки. Точки съемочных, а иногда и разбивочных сетей закрепляют временными знаками - деревянными или бетонными столбами, металлическими штырями, отрезками рельсов и т. д. (рис. 10.4, а- з). Их закрепляют в земле на глубину до 2 м. В верхней части такого знака крестом, точкой или риской отмечают местоположение центра или точки с высотной отметкой.

При продолжительности использования (более 0,5 г.) временные знаки закладывают на глубину 0,5 м (минимальное расстояние до подземных коммуникаций от поверхности грунта принято 0,7 м). При наличии твердого покрытия и отсутствии интенсивного движения транспорта используют штыри из отрезков арматуры и труб, деревянные столбики (рис. 10.4, д - з). В процессе строительства на возведенных конструкциях и близрасположенных зданиях высоты и створы осей фиксируют открасками (рис. 10.4, к -м).


Рис. 10.4. Знаки закрепления основных, главных разбивочных осей и отметок:
а - знак закрепления основных или главных разбивочных осей зданий высотой до пяти этажей, сооружений высотой до 15 м с продолжительностью строительства до 0,5 г., б - то же, более 0,5 г., в - то же, с глубиной промерзания согласно таблице, г - ограждения знаков, д - закрепление разбивочных осей на скалах и бетоне ограждения в видетура из камней, е, ж, з - знаки закрепления осей и отметок линейных сооружений, и - знак закрепления осей и отметок дюбелями на зданиях, твердых покрытиях дорог, к - откраска закрепления створа оси, л - то же ориентирной риски, м - то же, отметки; 1 - металлический стержень, 2 - бетон, 3 - деревянная крышка, 4 - металлическая пластина, 5 - якорь, 6 - песок, 7 - анкер, 8 - деревянные металлические столб и перекладина, 9 - скальный грунт, бетон, 10 - откраска пересечения осей, 11 - ориентирная веха, 12 - полочка-зарубка на деревянном столбе для установки рейки, 13 - деревянный столб-репер, 14 - постоянный знак - деревянный кол, 15 - карандашная черта створа оси и ориентирной риски, 16 - откраска

 

АЗИМУТЫ, РУМБЫ, ДИРЕКЦИОННЫЕ УГЛЫ
И ЗАВИСИМОСТИ МЕЖДУ НИМИ

При выполнении геодезических работ на местности, работ с картой или чертежом необходимо определить положение линии (ориентировать линию) относительно стран света или какого-нибудь направления, принимаемого за исходное.

Ориентирование заключается в том, что определяют угол между исходным направлением и направлением данной линии. За исходное направление для ориентирования принимают истинный (географический), магнитный меридианы или ось абсцисс прямоугольной системы координат плана. В качестве углов, определяющих направление линии, служат истинный и магнитный азимуты, дирекционный угол и румбы.

Угол между северным направлением меридиана и направлением данной линии MN называется азимутом (рис. 2.1), измеряется от севера через восток, юг и запад, т. е. по направлению движения часовой стрелки, и может иметь значения 0...360°. Азимут, измеряемый относительно истинного меридиана, называется истинным.

В геодезии принято различать прямое и обратное направления линии. Если направление линии MN от точки М к точке N считать прямым, то NM - обратное направление той же линии. В соответствии с этим угол А - прямой азимут линии MN в точке М, a A1 - обратный азимут этой же линии в точке N.

Меридианы разных точек не параллельны между собой, так как они сходятся в точках полюсов. Отсюда азимут линии в разных ее точках имеет разное значение. Угол между направлениями двух меридианов называется сближением меридианов и обозначается γ. Зависимость между прямым и обратным азимутами линии MN выражается формулой A1 = A + 180° + γ.

Истинные азимуты линий местности определяются путем астрономических наблюдений или с помощью приборов - гиротеодолитов.

Иногда для ориентирования линии местности пользуются не азимутами, а румбами.

Румбом (рис. 2.2) называется острый угол между ближайшим (северным С или южным Ю) направлением меридиана и направлением данной линии.


Рис. 2.1. Азимуты

Румбы обозначают буквой г с индексами, указывающими четверть, в которой находится румб. Названия четвертей составлены из соответствующих обозначений стран света. Так, первая четверть - северо-восточная (СВ), вторая - юго-восточная (ЮВ), третья - юго-западная (ЮЗ), четвертая - северо-западная (СЗ). Соответственно обозначают румбы в четвертях, например, в первой rсв во второй - rюв Румбы измеряют в градусах (0...90°).

Зависимость между азимутами и румбами

Четверть А, град r
I (СВ) 0...90 А
II (ЮВ) 90... 180 180° - A
III (ЮЗ) 180...270 A -180°
IV (СЗ) 270...360 360° - A

В прямоугольной системе координат ориентирование пинии производят относительно оси абсцисс. Угол, отсчитываемый в направлении хода часовой стрелки от положительного (северного) направления оси абсцисс до линии, направление которой определяется, называется дирекционным. Дирекционные углы обозначаются буквой а и подобно азимуту изменяются 0...360°.

Дирекционный угол какого-либо направления непосредственно на местности не измеряют, его значение можно вычислить, если для данного направления определен истинный азимут. Зависимость между дирекционным утлом а и истинным азимутом А приведена

Рис. 2.2. Румбы Рис. 2.3. Зависимость между дирекционным углом и истинным азимутом линии

18


Рис. 2.4. Зависимость между углами: а - истинным и магнитным азимутами, б - магнитным азимутом и дирекционным утлом

на рис. 2.3. В данном случае у - сближение меридианов - представляет собой угол между истинным меридианом М и осью абсцисс в этой точке. Ось абсцисс параллельна осевому меридиану зоны, в которой расположена линия MN. Как видно из рисунка, α = A - γ Так же, как и для азимута, различают прямой и обратный дирекционные углы: α - прямой, α’ - обратный дирекционные углы линии MN: α’ = α + 180°.

Румбы дирекционных углов обозначают и вычисляют так же, как румбы истинных азимутов, только отсчитывают от северного и южного направлений оси абсцисс.

Направление магнитной оси свободно подвешенной магнитной стрелки называется магнитным меридианом. Угол между северным направлением магнитного меридиана и направлением данной линии называют магнитным азимутом. Магнитный азимут, так же как и истинный, считают по направлению движения часовой стрелки; он также изменяется в пределах 0...360°. Зависимость между магнитными азимутами и магнитными румбами такая же, как между истинными румбами. Так как магнитный полюс не совпадает с географическим, направление магнитного меридиана в данной точке не совпадает с направлением истинного меридиана. Горизонтальный угол между этими направлениями называют склонением магнитной стрелки δ. В зависимости от того, в какую сторону уклоняется северный конец стрелки от направления истинного меридиана, различают восточное и западное склонение. Перед значением восточного склонения обычно ставят знак плюс, западного - минус. Зависимость (рис. 2.4, а) между истинным А и магнитным AM азимутами выражается формулой А = АМ + δ. При использовании этой формулы учитывают знак склонения. Еслиизвестно склонение δ магнитной стрелки и сближение меридианов γ, то по измеренному магнитному азимуту АM линии MN можно вычислить дирекционный угол α (рис. 2.4, б) этой линии: α = AM + (δ-γ), где разность γ -3 - поправка на склонение стрелки и сближение меридианов (учитывают при ориентировании топографической карты).

В различных точках Земли магнитная стрелка имеет различное склонение. Так, на территории РФ оно колеблется в пределах 0... + 15°.

Склонение магнитной стрелки не остается постоянным и в данной точке Земли (различают вековые, годовые и суточные изменения склонений). Больше всего изменяются суточные склонения, колебания которых достигают 15’. Следовательно, магнитная стрелка указывает положение магнитного меридиана приближенно и ориентировать линии местности по магнитным азимутам можно тогда, когда не требуется высокой точности.

 

                                                                      

 

 

Вариант 5

Перечислите основные виды условных знаков для геодезических чертежей. Дайте их характеристику.

Как с помощью теодолита измеряется вертикальный угол? Необходимые вычисления.

Измерение горизонтальных и вертикальных углов теодолитами

Измерение горизонтальных и вертикальных углов в ходах постоянного съемочного обоснования производится отъюстированными теодолитами.

3.2.1. Измерение горизонтальных углов

Измерение горизонтальных углов постоянного съемочного обоснования рекомендуется выполнять по трехштативной системе. Если трехштативную систему применить нельзя, угол следует измерять на веху, устанавливаемую по круглому уровню (см.рис.3.22)

Таблица 3. 3

Точка

 

Отсчеты

Вычисленныйугол из полуприема

Среднее значение угла

стояния визирования Круг I II 1+И 2
  2 3 2 3 П Л 10°28,0' 107 18,5 197°55,5' 294 45,0 28,2' 18,0 55,3 44,8 28,1' (1) 28,2 (2) 55,4 (4) 44,9 (3) 96°50,У 96°49,5' 96°49,8'

либо на отвес, прикрепленный к штативу и центрированный над точкой.

Устанавливают теодолит над вершиной измеряемого угла в рабочее положение, центрируют его при помощи нитяного отвеса или оптического центрира с точностью 2 мм. С такой же точностью центрируют и марки, устанавливаемые над наблюдаемыми точками. Каждый горизонтальный угол измеряют одним полным приемом с перестановкой лимба между полуприемами на величину, близкую к 90°. Измерения всегда начинают при вертикальном круге лево (Л). Для этого закрепляют лимб и, вращая алидаду, наводят центральную точку сетки нитей зрительной трубы или биссектор на заднюю (правую) веху или марку, при этом пользуются наводящими винтами зрительной трубы и алидады горизонтального круга, после этого при том же положении вертикального круга визируют на переднюю (левую) веху или марку. При визировании по каждому направлению производят два наведения биссектора на предмет и соответственно делают два отсчета по шкалам микрометра, округляют их до целого (наименьшего) деления микроскопа (верньера) и записывают в журнал (табл. 3.3). На этом заканчивается первый полуприем.

Переводят зрительную трубу через зенит и переставляют лимб па величину, близкую к 90°, для второго полуприема и повторяют визирование при положении вертикального круга право (П). При этом алидаду перемещают в противоположную сторону, наводят пересечение нитей на переднюю веху (марку), а потом на заднюю и делают отсчеты, записывают в журнал (см. табл. 3.3).

Для получения значения правого по ходу горизонтального угла необходимо из среднего отсчета, полученного при визировании на заднюю точку, вычесть средний отсчет, полученный при визировании на переднюю точку. Для получения левого по ходу угла из среднего отсчета на переднюю точку вычитают средний отсчет на заднюю точку. Все записи по измерению углов заносятся в специальный полевой журнал (табл. 3.3).

Записи в журналах ведутся карандашом, цифры должны быть отчетливыми, т. е. не допускающими различных толкований, неправильная запись зачеркивается, но так, чтобы она читалась, а выше зачеркнутого записывается исправленный результат. Подчистки резинкой, скребком, бритвой не допускаются.

Страницы в полевом журнале перед наблюдением должны быть пронумерованы и подписаны наблюдателем и начальником партии.

По окончании работ по измерению горизонтальных углов на данном объекте составляют схему, на которую выписывают углы до десятых долей минуты. Невязки не должны превышать величины, подсчитанной по формуле

/h«on = 1'V«I (3.4)

где п — число измеренных углов в полигоне или ходе.

На узловых и исходных пунктах горизонтальные углы измеряют одним полным круговым приемом

При измерении углов по способу круговых приемов алидаду, как при положении круг право П, так и при лево JI вращают по ходу часовой стрелки. При визировании по каждому направлению делают два наведения биссектора на визирную цель и производят соответственно по микрометру два отсчета, округляя их до целого деления микрометра (верньера). При движении алидады по ходу часовой стрелки в первом полуприеме зрительную трубу вначале наводят на крайнюю левую точку хода, а затем на все последующие по порядку: полуприем заканчивают наведением на начальную точку. Затем зрительную трубу переводят через зенит и движением алидады по ходу часовой стрелки вновь наводят на крайнюю левую точку хода, повторяя наблюдения на все последующие точки в том же порядке, как и в первом полуприеме.

Таким образом, для исключения систематического влияния от увлекания алидадой лимба в обоихполуприемах алидаду вращают в одном и том же направлении (по ходу часовой стрелки). Перед началом измерения алидаду поворачивают в направлении измерения углов на 10—15 оборотов.

Важнейшим условием получения хороших результатов в угловых измерениях является устойчивость теодолита, визирных марок или вех, поэтому штатив должен быть прочным.

Во избежание кручения штатива от нагревания солнцем при измерении углов применяют зонт, защищая им не только теодолит, но и весь штатив. При установке на асфальте в жаркую погоду или на тающем льду весной необходимо концы ножек штатива засыпать землей или снегом, чтобы металлические концы не плавили асфальт или лед и штатив не опускался.

Кроме того, необходимо обращать внимание на правильную работу подъемных винтов, так как даже небольшой люфт в осях вызывает смещение теодолита при вращении лимба или алидады.

При измерении горизонтальных углов визирный луч не должен проходить ниже 0,5 м от поверхности земли, асфальта и не ближе 0,5 м от вертикальной поверхности предметов.

При измерении горизонтальных углов в ходах постоянного съемочного обоснования руководствуются следующими правилами. Окуляр микроскопа устанавливают на наиболее резкое изображение штрихов круга, следя за тем чтобы не было параллакса. В случае разницы в изображении штрихов ставят окуляр на среднюю резкость изображения. Окуляр зрительной трубы устанавливают на резкое изображение сетки нитей и добиваются четкого изображения наблюдаемых предметов в поле зрения трубы и отсутствия параллакса. Желательно, чтобы при измерении углов установка окуляра и фокусировка трубы оставались неизменными.

Рукоятку оптического микрометра следует вращать только по ходу часовой стрелки (при совмещении штрихов). Во время измерения углов наводящие винты алидады горизонтального круга следует ставить на середину резьбы и выполнять наведения только на ввинчивание винта, при этом закрепительные винты не следует сильно закреплять.

Основными погрешностями при измерении углов являются следующие:

Погрешности, возникающие непосредственно в процессе измерения угла. К ним относятся погрешности визирования, отсчета, влияиия остаточных погрешностей после юстировки прибора, погрешности смещения штатива и теодолита во время измерений, а также личные погрешности наблюдателя.

1. Инструментальные погрешности.

Влияние коллимационной ошибки ДС на измеренное направление

ДС=——, (3.5)

cos а

где С — коллимационная ошибка теодолита, а — угол наклона трубы при визировании на пункт.

Эта погрешность компенсируется, если наблюдать при разных положениях вертикального круга (П и Л), а коллимационная ошибка остается постоянной во время измерений. Если коллимационная ошибка изменяется (например, при различной фокусировке), то остаточное влияние ее тем больше, чем больше изменение С и чем больше угол наклона а. В этом случае угол будет содержать погрешность

1 ( sic) «!c) Л

дС = ± (-J---!_ 1 (3.6)

2 V cosа2 cosc^ /

где 6}С> и б|с) — изменение коллимационной ошибки при переходе от измерений при круге право П к измерению при круге лево Л для направлений 1 и 2, определяющих измеряемый угол. Из формулы видно, что влияние коллимационной ошибки на измеренный угол тем больше, чем больше разница в величинах 6(с) и в абсолютных величинах углов а.

Влияние наклона оси вращения трубы теодолита на измеряемое направление равно

(О = t tg а, (3.7)

где i — угол наклона оси вращения трубы, a — угол наклона трубы.

В случае когда вертикальная ось вращения теодолита приведена в отвесное положение, это влияние будет исключено в среднем из двух измере-нин при различных положениях трубы .(П и Л) при условии, что угол между осью вращения трубы и вертикальной осью вращения теодолита остается неизменным.

Если вертикальная ось вращения теодолита несколько отклоняется от отвесного положения, то это вызовет появление погрешности, определяемой формулой

,М = 1/2(6® tga2-6«tga2), (3.8)

где б}'1 и —среднее значение угла наклона оси вращения *трубы при П и Л для направлений 1, 2, определяющих угол; ai и а2 — углы наклона трубы.

Влияние рефракции при наблюдениях вертикальных углов в прямом и обратном направлениях уменьшается. При измерении углов постоянного съемочного обоснования, где при сравнительно коротких сторонах разность в углах наклона может достигать несколько градусов, следует особенно тщательно приводить ось вращения теодолита в отвесное положение.

К другим инструментальным погрешностям относятся азимутальные, для уменьшения которых следует надежно устанавливать штатив над центром пункта, крепко затягивать винты, скрепляющие ножки штатива с головкой и места соединения раздвижных ножек, а также проверять регулировку вращения подъемных винтов. Рекомендуется перед измерением углов теодолит исследовать в отношении азимутальных сдвигов в условиях, близких к полевым.

2. Погрешности от воздействия внешней среды.

К этим погрешностям следует отнести влияние нагревания теодолита

лучами солнца, изменения температуры воздуха, колебания изображений и т. д.

Погрешности, возникающие под влиянием неравномерного нагрева прибора, можно значительно уменьшить, закрывая теодолит зонтом от воздействия прямых лучей солнца.

Для уменьшения погрешностей, вызванных колебаниями изображения, необходимо измерение углов производить в часы наиболее спокойных изображений. При ветре средней силы рекомендуется теодолит и штатив прикрыть зонтом со стороны ветра. Визирный луч не должен проходить низко над землей и близко от местного предмета, так как в случае несоблюдения этого условия на визирный луч будет влиять рефракция, значительно искажающая результат измерения угла.

3.Погрешности центрирования и редукции теодолита и марок над пунктами.

Для ослабления влияния погрешностей центрирования и редукций необходимо применять трехштатипную систему. В случае когда теодолит и марки центрируются с одинаковой точностью (например, 1 мм), совместное влияние погрешности центрирования редукции (при ходе с равными сторонами S) будет равно

. тсг= — -л/2, (3.9)

а в случае хода с разными сторонами

3.2.2. Измерение вертикальных углов

При развитии сетей постоянного съемочного обоснования в горной и всхолмленной местности определение высот пунктов этих сетей, кроме геометрического, допускается выполнятьтригонометрическим (геодезическим) нивелированием при длине хода не более 1 км.

Тригонометрическое нивелирование производится измерением вертикальных углов, приведенными выше теодолитами, одним полным приемом по трем горизонтальным нитям при двух положениях вертикального круга при круге П и Л. Колебание места нуля сетки (МО) при повторных его определениях не должно быть более 20", Высоты теодолитов и визирных целей должны измеряться дважды с точностью до 1 см. Превышения между пунктамипостоянного съемочного обоснования определяются в прямом и обратном направлениях.

Расхождения между прямыми и обратными превышениями не должны превышать 10 см на 1 км расстояния.

Допустимые невязки в ходах тригонометрического нивелирования не должны превышать 10 У L> где L — длина хода в километрах.

Для измерения вертикального угла (угла наклона) последовательно наводят пересечение вертикальной нити с каждой из трех горизонтальных нитей сетки зрительной трубы на точку, отмеченную на вехе или рейке, соответствующую высоте теодолита. Делают отсчеты по вертикальному кругу, при положении пузырька уровня, при вертикальном круге в нуль-пункте.

При измерении вертикальных углов теодолитом с компенсатором. заменяющим уровень при алидаде вертикального круга,, отсчет по вертикальному кругу производится послевизирования зрительной трубой теодолита на точку вешки (рей!<и), соответствующую высоте теодолита.

В формуле (3.12) к величинам, меньшим 90°, следует предварительно прибавлять 360°;

сс = 90°—г или а = 2— 90°.

В формулах (3.12) — (3.15) П и Л — отсчеты по вертикальному кругу при положении его соответственно справа и слева от наблюдателя; МО — место нуля, а — угол наклона, Мг — место зенита, z — зенитное расстояние.

При измерении углов как вертикальных, так и горизонтальных, практически невозможно определить температуру вдоль каждого направления.

- Имеющиеся данные о распределении температуры в приземном слое воздуха позволяют установить, что влияние рефракции сильнее сказывается на зенитные расстояния и значительно меньше на горизонтальные углы.

Практика работ подтвердила это обстоятельство. Установлено, что вертикальная рефракция может искажать зенитные расстояния до 2' и более, в то время как влияние боковой рефракции на горизонтальные углы в исключительных случаях может достигнуть всего десяти секунд дуги.

В числе аномальных могут оказаться и направления, проходящие близ нагретых солнечным лучом сооружений, стоек сигнала и т. п. .

Следовательно, измерение вертикальных углов необходимо делать обязательно в прямом и в обратном направлениях, что повысит точность в два раза.

Измерение горизонтальных углов рекомендуется выполнять по теневой стороне улицы в удалении от стен здания. Пользоваться зонтом, что позволит уменьшить вращение штатива от нагрева солнцем.

 

Вариант 6

Что такое рельеф, его типовые формы, как рельеф изображается с помощью горизонталей?

ИЗОБРАЖЕНИЕ РЕЛЬЕФА

Рельефом называется совокупность пространственных форм (неровностей) земной поверхности. Рельеф — один из важнейших элементов географической среды. Он оказывает существенное влияние на перераспределение тепла и влаги, характер миграции химических элементов и, следовательно, на свойства почв и растительности, определяя таким образом ландшафтные особенности территории. С другой стороны, размещение населенных пунктов, путей сообщения, промышленных и энергетических сооружений, а также условия сельскохозяйственного производства (экспозиция склонов, смыв почв, возможность механической обработки земли и др.) во многих случаях обусловливаются характером рельефа земной поверхности. При боевых действиях учет особенностей рельефа необходим для определения возможностей открытого передвижения, маскировки, условий проходимости и

Способ изображения рельефа на карте. Задача отображения рельефа на картах весьма сложна, поскольку на плоском листе бумаги должны быть показаны объемные, выпуклые и вогнутые формы, их высоты, размеры, крутизна склонов. Изображение рельефа должно быть измеримым.

На топографических картах рельеф изображают с помощью горизонталей, которые дополняются указанием высот характерных точек местности и условными знаками отдельных элементов и форм рельефа.

Горизонталь — это воображаемая линия на физической поверхности Земли, все точки которой имеют одинаковую высоту над уровнем моря, т.е. абсолютная высота вдоль каждой горизонтали постоянна. Если рассечь какую-то форму рельефа горизонтальными плоскостями, как показано на рисунке 30, А, каждая линия сечения будет иметь постоянную высоту; она таким образом является горизонталью.

Рис. 30. Принцип образования горизонталей

Секущие плоскости строят через равные промежутки по высоте, и полученные линии сечения проектируют отвесными лучами на общую плоскость (карту). Так на карте получают изображение рельефа системой горизонталей в виде замкнутых кривых линий (рис. 30, Б). Очертания горизонталей, очевидно, обусловлены внешним обликом форм рельефа, а их количество на данной карте — наибольшей разностью высот на картографируемой территории.

Рис. 31. Элементы ската (А). Отражение элементов ската с помощью горизонталей на карте (Б)

Разность высот двух соседних основных горизонталей называется высотой сечения рельефа. На рисунке 31, А показан разрез участка земной поверхности вертикальной плоскостью. Секущие горизонтальные поверхности проведены через 10 м по высоте и имеют отметки 90, 100, 110, 120 и 130 м. Высота сечения h равна 10 м. Линии сечения земной поверхности горизонтальными плоскостями затем спроектированы на общую горизонтальную поверхность (рис. 31, Б), т.е. карту. Промежутки на карте между двумя соседними горизонталями называются заложением d. Заложение всегда меньше, чем расстояние S между теми же точками на склоне (скате).

Крутизна ската выражается через угол наклона α. При постоянной высоте сечения h изменение крутизны ската влечет изменение заложения: чем больше угол наклона, тем меньше заложение на карте. Связь между элементами ската выражается математически: d = S·cosα ; h = S·sinα ; h = d·tgα ; d = h·tgα.

Величина наклона земной поверхности (крутизна ската) часто характеризуется не через угол α, а уклоном i. Уклон — это отношение величины превышения местности к тому горизонтальному протяжению, на каком оно наблюдается: i =h/d= tgα. Уклон выражается обычно десятичной дробью в тысячных долях (или в процентах). Так, при уклоне дороги, равном 0,015, на отрезке в 1000 м подъем составит 15 м. Уклон железнодорожного полотна на сложных участках показан на специальных табличках, установленных на столбах около дороги.

От высоты сечения зависит детальность изображения рельефа на карте. При редких секущих плоскостях, т.е. при большой высоте сечения ряд особенностей форм земной поверхности не будет отражен. Например, в нижней части склона, показанного на рисунке 31, А, имеются повышения и понижения, которые не изобразились на карте. Поэтому на детальных картах высота сечения берется меньшей, а с уменьшением масштаба высота сечения увеличивается.

На советских топографических картах применяют стандартные высоты сечения рельефа. Например, при картографировании равнинных и всхолмленных территорий приняты следующие высоты сечения: на карте масштаба 1:25 000 — 5 м, 1:50 000 — 10 м, 1:100 000 — 20 м. Горизонтали, имеющие стандартную разность высот, называются основными. Горизонтали проводят сплошными тонкими коричневыми линиями.

Указание о принятой на данной карте высоте сечения дается под линейным масштабом карты в виде фразы «Сплошные горизонтали проведены через…».

Абсолютные высоты отдельных горизонталей, т.е. их отметки, подписываются в специальных разрывах горизонталей. При этом верх цифр направлен в сторону повышения ската. На картах для большей наглядности утолщается каждая пятая горизонталь, высота которой всегда соответствует упятеренной высоте сечения рельефа на данной карте.

На пологих склонах иногда расположены важные детали рельефа (западины, возвышения, уступы), которые при стандартной высоте сечения не отразятся на карте. Пример тому — нижний участок склона между горизонтальными 90 и 100 м на рисунке 31, Л. В этих случаях между основными секущими плоскостями вводят дополнительные и образующиеся при этом горизонтали показывают на карте прерывистыми линиями. Обычно дополнительные сечения проводят посередине между основными и полученные горизонтали называют полугоризонталями. Если и их недостаточно для выявления особенностей рельефа, проводят вспомогательные горизонтали (примерно через четверть высоты сечения), обозначаемые еще более короткими штрихами.

Рис. 32. Изображение рельефа горизонталями: основными (90, 100, 110 м), дополнительной (95 м), вспомогательной (98 м)

Участок склона между основными горизонталями 90 и 100 м на рисунке 31, Б выглядит длинным и пологим, хотя в действительности он осложнен повышением. На увеличенном рисунке того же участка (рис. 32) построены дополнительные секущие плоскости и проведены полугоризонталь 95 м и вспомогательная горизонталь 98 м, которые и отобразили на карте более детально строение ската.

Высотными отметками называются подписи абсолютных высот в метрах высших точек вершин, низших точек впадин, точек на перегибах склонов. Нередко отметки даются для ориентиров (перекрестки дорог, отдельные здания и др.). Абсолютная высота зеркала воды в реке или озере называется урезом воды, ее значение проставляется на береговой линии водных объектов.

Для показа на картах ряда форм рельефа, не выражающихся горизонталями в масштабе карты, применяют условные обозначения. Таковы изображения курганов, скал-останцев, отдельно лежащих камней, оползней, осыпей из песка, камней или щебня, а также оврагов, карстовых воронок, промоин, крутых обрывов и задернованных уступов. Кроме того, знаками синего цвета характеризуются фирновые поля, ледники, ледяные обрывы и другие проявления современного оледенения.

Некоторые из этих знаков сопровождаются количественными показателями. Например, даются высота обрывов, ширина и глубина оврагов в метрах. Искусственные формы рельефа (насыпи, выемки, и др.) показывают на картах знаками черного цвета, изображение природного рельефа дается коричневым цветом.

Основные элементы и формы рельефа. Рельеф земной поверхности слагается скатами (склонами) различной формы и крутизны; схематически выделяют склоны прямые и изогнутые в плане, а также склоны прямые (ровные) и изогнутые в профиле. Их изображения на карте отличаются формой горизонталей и характером чередования заложений разной величины (рис. 33).

Рис. 33. Схематическое изображение горизонталями основных форм склонов

При встрече двух скатов возникают линии перегиба рельефа: водораздельная и водосборная линии, бровка и подошва ската.Водораздельная линия образуется на выпуклой форме рельефа при встрече двух склонов противоположного направления; на ней происходит переход от подъема к спуску. Водосборная линия, или тальвег,— линия перегиба склонов противоположного направления на вогнутой форме рельефа; на ней происходит переход от спуска к подъему. Бровка — это линия стыка горизонтальной площадки или пологого ската с более крутым скатом. Подошва — это линия перехода от более крутого склона к менее крутому или к горизонтальной площадке. На бровке и подошве изменяется крутизна, а не направление ската. Линии перегиба рельефа в природе обычно бывают изогнутые и наклонные.

Несложные сочетания скатов образуют простые формы рельефа. К ним относятся положительные формы, возвышающиеся над окружающей местностью,— гора (холм), простой хребет (увал), уступ и отрицательные, вогнутые формы — впадина, долина (лощина, балка), прогиб склона.

Гора — куполообразное поднятие с более или менее крутыми склонами, в нижней части окаймляемыми подошвой — линией перехода скатов горы к окружающей местности. Гора, так же как и меньшая форма рельефа — холм, изображается замкнутыми горизонталями с бергштрихами, направленными наружу от них (рис. 34). Впадина образуется более или менее крутыми замкнутыми склонами, идущими вниз от бровки, и заканчивается дном с самой низкой точкой впадины. Небольшие неглубокие впадины называют часто блюдцами, а конусообразные углубления — воронками. Впадина, как и гора, изображается на карте замкнутыми горизонталями, но бергштрихи от горизонталей направлены внутрь впадины (см. рис. 34).

Рис. 34. Изображение форм рельефа участка местности с помощью горизонталей, высотных отметок и условных знаков

Простой хребет образован двумя склонами, идущими вверх от подошвы и смыкающимися по водораздельной линии. На карте хребты изображаются системой вытянутых V-образных горизонталей, выпуклости которых обращены вниз по склону. Долина, так же как лощина и балка, ограничена двумя склонами, идущими вниз от бровок и дающими при смыкании линию тальвега. Это вытянутая, понижающаяся в одном направлении вогнутая форма. По дну долины течет постоянный водоток. Долина (как и лощина) изображается на карте системой V-образных горизонталей, обращенных выпуклостью вверх по склону.

На рисунке 35 представлено перспективное изображение участка речной долины с обозначением ее частей, поперечный разрез долины, а ниже — схематическое изображение горизонталями полосы речной долины вдоль линии профиля. Редкие горизонтали на поверхности террасы сменяются сгущением горизонталей на участке 6—5—4. Склон и горизонтальная площадка, например пойма, образуют перегиб склона (участок 5—4—3); в этом случае после сгущения горизонталей следует их заметное разрежение.

Рис. 35. Участок речной долины

Рассмотренные выше формы не встречаются в природе изолированно, обычно они сочетаются, переходят одна в другую и образуют более сложные комплексы форм. Например, когда в хребет или увал с противоположных сторон врезаются две долины или лощины, на водоразделе образуется прогиб, называемый седловиной, наиболее пониженная точка которой является перевалом.

Итак, изображение рельефа горизонталями позволяет распознать по карте формы и элементы рельефа, а также получить целый ряд его количественных характеристик. С уменьшением масштаба карт уменьшается подробность изображения рельефа, так как увеличиваются высоты сечения, с карты снимаются изображения более мелких форм, рисунок горизонталей все более обобщается (сглаживается) . Для ряда форм рельефа применяют внемасштабные условные знаки. Так происходит обобщение, т.е.генерализация изображения рельефа.

 

Как с помощью теодолита построить заданный горизонтальный угол?


Дата добавления: 2018-02-18; просмотров: 1648; Мы поможем в написании вашей работы!

Поделиться с друзьями:






Мы поможем в написании ваших работ!