Неинерциальные системы отсчета. Силы инерции.



Как известно, законы Ньютона выполняются только в инерциальных системах отсчета. Системы отсчета, которые движутся относительно инерциальной системы с ускорением, называются неинерциальными. В неинерциальных системах законы Ньютона, вообще говоря, уже применять нельзя. Однако законы динамики можно применять и для них, если кроме сил, которые обусловленны воздействием тел друг на друга, ввести в рассмотрение понятие силы особого рода - так называемую силу инерции.

 При учете сил инерции второй закон Ньютона будет справедлив для любой системы отсчета: произведение массы тела на ускорение в рассматриваемой системе отсчета равно сумме всех сил, действующих на данное тело (учитывая и силы инерции). При этом силы инерции F(in) должны быть такими, чтобы вместе с силами F, обусловленными воздействием тел друг на друга, они сообщали телу ускорение а', каким оно обладает в неинерциальных системах отсчета, т. е.

Так как F=ma (a - ускорение тела в инерциальной системе отсчета), то

Силы инерции обусловлены ускоренным движением системы отсчета относительно измеряемой системы, поэтому в общем случае следует учитывать следующие случаи возниконовения этих сил: 1) силы инерции при ускоренном поступательном движении системы отсчета; 2) силы инерции, которые действуют на тело, покоящееся во вращающейся системе отсчета; 3) силы инерции, которые действуют на тело, движущееся во вращающейся системе отсчета.

 Рассмотрим эти случаи.

 

Закон сохранения импульса.

Импульс силы.Покой и движение тела относительны, скорость движения тела зависит от выбора системы отсчета. По второму закону Ньютона независимо от того, находилось ли тело в покое или двигалось, изменение скорости его движения может происходить только при действии силы, т. е. в результате взаимодействия с другими телами.

Если на тело массой m в течение времени t действует сила и скорость его движения изменяется от  до , то ускорение  движения тела равно

Импульс тела. Выражение показывает, что имеется физическая величина, одинаково изменяющаяся у всех тел под действием одинаковых сил, если время действия силы одинаково. Эта физическая величина, равная произведению массы тела на скорость его движения, называется импульсом тела или количеством движения.

Изменение импульса тела равно импульсу силы, вызывающей это изменение. Импульс тела является количественной характеристикой поступательного движения тел. За единицу импульса в СИ принят импульс тела массой 1 кг, движущегося поступательно со скоростью 1 м/с. Единицей импульса является килограмм-метр в секунду (кг*м/с).

Закон сохранения импульса. Выясним, как изменяются импульсы двух тел при их взаимодействии.

 Обозначим скорости тел массами m1 и m2 до взаимодействия через V1 и V2 , а после взаимодействия — через V’1и V’2 .

По третьему закону Ньютона силы, действующие на тела при их взаимодействии, равны по модулю и противоположны по направлению; поэтому их можно обозначить F и -F .

Для изменений импульсов тел при их взаимодействии на основании равенства можно записать

где t — время взаимодействия тел. Из этих выражений получаем

 

Работа силы.

Энергетические характеристики движения вводятся на основе понятия механической работы или работы силы.

Работой A, совершаемой постоянной силой F называется физическая величина, равная произведению модулей силы и перемещения, умноженному на косинус угла α между векторами силы F и перемещения S

Работа является скалярной величиной. Она может быть как положительной (0° ≤ α < 90°), так и отрицательной (90° < α ≤ 180°). При α = 90° работа, совершаемая силой, равна нулю. В системе СИ работа измеряется в джоулях (Дж).

Джоуль равен работе, совершаемой силой в 1 Н на перемещении 1 м в направлении действия силы.

Если проекция  cилы F на направление перемещения не остается постоянной, работу следует вычислять для малых перемещений Δsi и суммировать результаты:

 


Дата добавления: 2018-02-18; просмотров: 281; ЗАКАЗАТЬ РАБОТУ