Транспорт газов кровью. Транспорт кислорода



Кислород транспортируется кровью двумя способами: в связанном с гемоглобином виде — в форме оксигемоглобина и за счет физического растворения газа в плазме крови. В плазме растворена лишь небольшая часть О2 (около 2%).

Большая часть кислорода переносится кровью в виде химических соединений с гемоглобином. 100 мл крови могут переносить около 21 мл О2. Это - кислородная емкость крови.

Связывание кислорода с гемоглобином и высвобождение его зависят от парциального давления кислорода. Соотношение количества гемоглобина и оксигемоглобина в крови иллюстрирует кривая диссоциации оксигемо­глобина.

Участок кривой, соответствующий низким парциальным значениям кислорода, характеризует содержание оксигемо­глобина в капиллярах тканей, а фрагмент кривой, лежащий в области высо­кого парциального давления кислорода, соответствует крови в легочных капиллярах. Чем выше парциальное давление кислорода, тем больше содержание оксигемоглобина; при парциальном давлении 80-100 мм рт.ст. практически весь гемоглобин насыщается кислородом.

 

 

Динамика кривой зависит от нескольких факторов. Кривая может сдвигаться относительно оси абсцисс вправо или влево в зависимости от температуры,  парциального давления двуокиси углеро­да и величины рН (эффект Бора). При увеличении содержания двуокиси углерода, температуры и закислении крови (ацидоз) кривая диссоциации оксигемоглобина сдвигается вправо. Это отражает по­вышение способности оксигемоглобина отдавать кислород тканям и тем самым высвобождаться для дополнительного связывания СО2 и переноса его избытка из тканей в легкие. Напротив, при снижении Рсо2, защелачивании крови (алкалоз) и понижении температуры кривая сдвигается влево.

Транспорт кислорода и углекислого газа в тканях.

Кислород проникает из крови в клетки тканей путем диффузии, обуслов­ленной градиентом его парциальных давлений по обе стороны, через гематопаренхиматозный барьер. Среднее давление о2 артериальной крови составляет около 100 мм рт. ст., а в клетках, где кислород непрерывно расходуется, стремится к нулю.

Давление (или напряжение) О2 в тканях зависит не только от снабжения кислородом, но и от его потребления клетками. Наиболее чувствительны к недостатку кислорода клетки кардиомиоцитов и нейроны мозга, где окислительные про­цессы очень интенсивны. В отличие от этих клеток, скелетные мыш­цы относительно устойчивы к кратковременному прекращению кислородного снабжения, т.к. они могут использовать анаэробные процессы получения энергии, а также содержат (особенно красные волокна) миоглобин.

Перенос СО2 из клеток тканей в кровь тоже происходит путем диффузии, т. е. в силу разности напряжений СО2 по обе стороны гематопаренхиматозного барьера.

 

Регуляция дыхания.

В механизмах регуляции дыхания можно выделить афферентное, центральное и эфферентное звенья.

Афферентное звено

Величина дыхательных показателей в организме определяется: периферическими хеморецепторами сосудистых рефлексогенных зон, центральными хеморецепторами, находящимися в области продолговатого мозга и рецепторами легких. Хеморецепторы воспринимают изменения парциального давления СО2 и кислорода, а также рН крови, механорецепторы – степенно растяжения легких. Так, повышение давления СО2, снижение рН крови и снижение содержания О2 вызывают стимуляцию бульбарных хемочувствительных структур, что приводит к увеличению легочной вентиляции. Снижение же давления CO2 и повышение рН крови вызывают торможение бульбарных хемочувствительных структур, что приводит к снижению легочной вентиляции.

Нервные центры -кора большого мозга, гипо­таламус, мост мозга, а также продолговатый и спинной мозг.

Дыхательные нейроны.Основными элементами, входя­щими в дыхательный центр, являются дыхательные нейроны. Все они обла­дают ритмической залповой активностью, возникающей в определенный период дыхательного цикла. Инспираторные нейроны дают залповый разряд в фазу вдоха, экспира­торные нейроны разряжаются в период выдоха.

Ритмическое ды­хание обеспечивается в первую очередь периодической фазной деятельностью дыхательного центра продолговатого мозга. Это единственная структура из множества образований мозга, принимающих участие в регуляции дыхания, которая способна самостоятельно автоматически поддерживать ритмическое дыха­ние. Остальные структу­ры мозга модулируют ритм деятельности дыхательного центра, оказывая влияние на частоту и глубину дыхания и плавность смены вдоха на выдох.

Таким образом, функции дыхательных нейронов различных отделов мозга существенно отличаются.

Нейроны спинального уровня расположены в передних рогах шейного и грудного отделов спинного мозга, они рeгулируют деятельность диафрагмы и дыхательных мышц.

Нейроны продолговатого мозга расположены на дне 4-го желудочка, делятся на инспираторные и экспираторные, являются центрамиреципроктной координации (согласование вдоха и выдоха).

Нейроны моста расположены в ядрах черепных нервов и ретикулярной формации – регулируют частоту дыхания.

Нейроны гипоталамуса обеспечивают зависимость дыхания от функционального состояния организма (сон, бодрствование, физическая нагрузка), условий внешней среды, согласование дыхания с работой сердца.

Корковые нейроныобеспечивают зависимость дыхания от психоэмоционального состояния, условно-рефлекторные реакции. Произвольный контроль дыхательных движений.


Дата добавления: 2018-02-18; просмотров: 1272; Мы поможем в написании вашей работы!

Поделиться с друзьями:






Мы поможем в написании ваших работ!