Кодирование графической информации



Графическая информация на экране монитора представляется в виде растрового изображения, которое формируется из определенного количества строк, которые, в свою очередь, содержат определенное количество точек (пикселей). Каждому пикселю присвоен код, хранящий информацию о цвете пикселя.

Для получения черно-белого изображения (без полутонов) пиксель может принимать только два состояния: “белый” или “черный”. Тогда для его кодирования достаточно 1 бита:

1 – белый,

0 – черный.

Пиксель на цветном дисплее может иметь различную окраску. Поэтому 1 бита на пиксель – недостаточно.

Для кодирования 4-цветного изображения требуется два бита на пиксель, поскольку два бита могут принимать 4 различных состояния. Может использоваться, например, такой вариант кодировки цветов:

00 – черный 10 – зеленый

01 – красный 11 – коричневый

Цветное изображение на экране монитора формируется за счет смешивания трех базовых цветов: красного, зеленого, синего. Из трех цветов можно получить восемь комбинаций:

 

Следовательно, для кодирования 8-цветного изображения требуется три бита памяти на один пиксель.

Для получения богатой палитры цветов базовым цветам могут быть заданы различные интенсивности, тогда количество различных вариантов их сочетаний, дающих разные краски и оттенки, увеличивается.

Шестнадцатицветная палитра получается при использовании 4-разрядной кодировки пикселя: к трем битам базовых цветов добавляется один бит интенсивности. Этот бит управляет яркостью всех трех цветов одновременно.

Количество различных цветов и количество бит, необходимых для их кодировки связаны между собой формулой:

N = 2i

Где N – количество цветов, i - число бит, отводимых в видеопамяти под каждый пиксель (глубина цвета).

Объем растрового изображения определяется умножением количества точек на информационный объем одной точки, который зависит от количества возможных цветов.

Также графическая информация может быть представлена в виде векторного изображения. Векторное изображение представляет собой графический объект, состоящий из элементарных отрезков и дуг. Положение этих элементарных объектов определяется координатами точек и длиной радиуса. Для каждой линии указывается ее тип (сплошная, пунктирная, штрих-пунктирная), толщина и цвет. Информация о векторном изображении кодируется как обычная буквенно-цифровая и обрабатывается специальными программами.

Качество изображения определяется разрешающей способностью монитора, т.е. количеством точек, из которых оно складывается. Чем больше разрешающая способность, т.е. чем больше количество строк растра и точек в строке, тем выше качество изображение.

Кодирование звуковой информации

С начала 90-х годов персональные компьютеры получили возможность работать со звуковой информацией. Каждый компьютер, имеющий звуковую плату, микрофон и колонки, может записывать, сохранять и воспроизводить звуковую информацию.

Звук представляет собой звуковую волну с непрерывно меняющейся амплитудой и частотой. Чем больше амплитуда, тем он громче для человека, чем больше частота сигнала, тем выше тон. Программное обеспечение компьютера в настоящее время позволяет непрерывный звуковой сигнал преобразовывать в последовательность электрических импульсов, которые можно представить в двоичной форме.

Процесс преобразования звуковых волн в двоичный код в памяти компьютера:

 Процесс воспроизведения звуковой информации, сохраненной в памяти ЭВМ:

 Аудиоадаптер (звуковая плата) – специальное устройство, подключаемое к компьютеру, предназначенное для преобразования электрических колебаний звуковой частоты в числовой двоичный код при вводе звука и для обратного преобразования (из числового кода в электрические колебания) при воспроизведении звука.

В процессе записи звука аудиоадаптер с определенным периодом измеряет амплитуду электрического тока и заносит в регистр двоичный код полученной величины. Затем полученный код из регистра переписывается в оперативную память компьютера. Качество компьютерного звука определяется характеристиками аудиоадаптера: частотой дискретизации и разрядностью.

Частота дискретизации– это количество измерений входного сигнала за 1 секунду. Частота измеряется в герцах (Гц). Одно измерение за одну секунду соответствует частоте 1 Гц. 1000 измерений за 1 секунду – 1 килогерц (кГц). Характерные частоты дискретизации аудиоадаптеров: 11 кГц, 22 кГц, 44,1 кГц и др.

Разрядность регистра– число бит в регистре аудиоадаптера. Разрядность определяет точность измерения входного сигнала . Чем больше разрядность, тем меньше погрешность каждого отдельного преобразования величины электрического сигнала в число и обратно. Если разрядность равна 8 (16) , то при измерении входного сигнала может быть получено 28= 256 (216=65536) различных значений. Очевидно, 16-разрядный аудиоадаптер точнее кодирует и воспроизводит звук, чем 8-разрядный.

Звуковой файл- файл, хранящий звуковую информацию в числовой двоичной форме.

Кодирование команд

Наряду с данными в оперативной памяти компьютера помещается программа управления его работой, команды которой кодируются последовательностью из нулей и единиц. Команды управления работой компьютера принято называть машинными командами.

Машинная команда должна содержать в себе следующую информацию:

1. какую операцию выполнить;

2. где находятся операнды;

3. куда поместить результат операции;

4. какую команду выполнять следующей.

Для каждого процессора машинная команда имеет стандартный формат и строго фиксированную длину. Команда состоит из кода операции адресной части. Код операции определяет действие, которое должен выполнить процессор; адресная часть содержит адреса величин, над которыми должна быть произведена эта операция. В зависимости от структуры адресной части команды, процессоры могут быть многоадресными.

Рассмотрим пример трехадресной команды:

КОП (код операции) А1 (адрес первого аргумента) А2 (адрес второго аргумента) А3 (адрес результата)
00000001 01000100 01001000 01001100

 

Длина кода операции обычно зависит от числа операций, входящих в систему команд компьютера. Код операции длиной p-бит позволяет хранить коды до 2p различных команд. Можно сформулировать простое правило определения оптимальной длины кода операции:

 ,

где Р - количество команд в системе команд машинного языка.

Единицы измерения информации

Существует много различных систем и единиц измерения информации. Наименьшей единицей измерения является байт. Байт - это последовательность, состоящая из восьми взаимосвязанных битов. Байт может принимать значения от 0 до 255.

Более крупная единица измерения - килобайт (Кбайт). 1Кбайт примерно равен 1000 байт. Однако для вычислительной, работающей с двоичными числами, более удобно представление чисел в виде степени двойки, и потому 1 Кбайт равен 210байт (1024). Более крупные единицы измерения информации образуются добавлением префиксов мега-, гига-, тера-:

1 Мбайт = 1024 Кбайт = 1020байт

1 Гбайт = 1024 Мбайт = 1030байт

1 Тбайт = 1024 Гбайт = 1040байт


Дата добавления: 2018-02-15; просмотров: 254;