Сравнение платформ программного маршрутизатора



По техническому заданию, обязательным требованием было построение программного маршрутизатора с ОС на ядре LINUX. Для этих целей было проанализировано 2 платформы на разных процессорах (таблица 1).

Таблица 1. Сравнение платформ производителей.

Платформа Supermicro SYS-5015A-PHF SuperMicro SYS-5016I-MR
Процессор Intel Atom D510 1660Мгц Intel Core i3 – 2100 3100Мгц
Кол-во ядер 2 2
ОЗУ 4Гб DDRII 8Гб DDRIII

 

ПЗУ

SSD 60Gb SSD Kingston V200+ Series

Сеть

2 х Intel 82574L Gigabit Ethernet

Цена 13 000 руб 18 000 руб

 

По требованиям технического задания, частота процессора не может быть меньше 2000 Мгц, в итоге была выбрана платформа SuperMicro SYS-5016I-MR. Наличие двух гигабитных сетевых интерфейса на чипе 82574L, добавляют следующую функциональность:

1. Аппаратная поддержка VLAN 802.1Q, позволяющая снять с центрального процессора работу по добавлению тега в кадр и пересчёту контрольной суммы .

2. Четыре очереди обработки пакетов (рис.1), позволяют выделить 4 системных процесса. Обеспечивая тем самым многопоточность, позволяя избежать случаев, когда одно ядро загружалось на 100%, а второе простаивало без работы, так как на 1 процесс выделялось всего одно ядро.

Рис.1 – «Очереди обработки пакетов»

Для увеличения надёжности сервера, был выбран SSD диск Kingston 60Gb, данный диск имеет показатели чтения/записи 535Мб/480Мб, что сопоставимо с RAID0 на 4 дисках HDD, а так как ОС на ядре LINUX после установки занимает 900Мб, 60Гб полностью удовлетворяют требования сервера для развёртывания системы.


Коммутаторы

Устройства канального уровня, которые позволяют соединить несколько физических сегментов локальной сети в одну большую сеть. Коммутация локальных сетей обеспечивает взаимодействие сетевых устройств по выделенной линии без возникновения коллизий, с параллельной передачей нескольких потоков данных .

Принцип работы коммутатора

Коммутаторы локальных сетей обрабатывают кадры на основе алгоритма прозрачного моста IEEE 802.1, который применяется в основном в сетях Ethernet. При включении питания коммутатор начинает изучать расположение рабочих станций всех присоединенных к нему сетей путем анализа МАС-адресов источников входящих кадров. Например, если на порт 1 коммутатора поступает кадр от узла 1, то он запоминает номер порта, на который этот кадр пришел и добавляет эту информацию в таблицу коммутации (рис. 2). Адреса изучаются динамически. Это означает, что, как только будет прочитан новый адрес, то он сразу будет занесен в контентно-адресуемую память. Каждый раз, при занесении адреса в таблицу коммутации, ему присваивается временной штамп. Это позволяет хранить адреса в таблице в течение определенного времени. Каждый раз, когда идет обращение по этому адресу, он получает новый временной штамп. Адреса, по которым не обращались долгое время, из таблицы удаляются.

Коммутатор использует таблицу коммутации для пересылки трафика. Когда на один из его портов поступает пакет данных, он извлекает из него информацию о МАС-адресе приемника и ищет этот МАС-адрес в своей таблице коммутации. Если в таблице есть запись, ассоциирующая МАС-адрес приемника с одним из портов коммутатора, за исключением того, на который поступил кадр, то кадр пересылается через этот порт. Если такой ассоциации нет, кадр передается через все порты, за исключением того, на который он поступил. Это называется лавинным распространением.

Рис. 2 – «Построение таблицы коммутации»

Широковещательная и многоадресная рассылка выполняется также путем лавинного распространения. С этим связана одна из проблем, ограничивающая применение коммутаторов. Наличие коммутаторов в сети не препятствует распространению широковещательных кадров (broadcast) по всем сегментам сети, сохраняя ее прозрачность. В случае если в результате каких-либо программных или аппаратных сбоев протокол верхнего уровня или сам сетевой адаптер начнет работать не правильно, и будет постоянно генерировать широковещательные кадры, коммутатор в этом случае будет передавать кадры во все сегменты, затапливая сеть ошибочным трафиком. Такая ситуация называется широковещательным штормом. Коммутаторы надежно изолируют межсегментный трафик, уменьшая, таким образом трафик отдельных сегментов. Этот процесс называется фильтрацией и выполняется в случаях, когда МАС-адреса источника и приемника принадлежат одному сегменту. Обычно фильтрация повышает скорость отклика сети, ощущаемую пользователем.

Коммутаторы локальных сетей поддерживают два режима работы: полудуплексный режим и дуплексный режим.

Полудуплексный режим - это режим, при котором, только одно устройство может передавать данные в любой момент времени в одном домене коллизий.    

Доменом коллизий (collision domain) называется часть сети Ethernet, все узлы которой распознают коллизию независимо от того, в какой части сети эта коллизия возникла.

Дуплексный режим – это режим работы, который обеспечивает одновременную двухстороннюю передачу данных между станцией- отправителем и станцией-получателем на МАС - подуровне. При работе в дуплексном режиме, между сетевыми устройствами повышается количество передаваемой информации. Это связано с тем, что дуплексная передача не вызывает в среде передачи коллизий, не требует составления расписания повторных передач и добавления битов расширения в конец коротких кадров. В результате не только увеличивается время, доступное для передачи данных, но и удваивается полезная полоса пропускания канала, поскольку каждый канал обеспечивает полноскоростную одновременную двустороннюю передачу.

Дуплексный режим работы требует наличия такой дополнительной функции, как управление потоком. Она позволяет принимающему узлу рисунок (например, порту сетевого коммутатора) в случае переполнения дать узлу - источнику команду (например, файловому серверу) приостановить передачу кадров на некоторый короткий промежуток времени.

Управление осуществляется между МАС-уровнями с помощью кадра-паузы, который автоматически формируется принимающим МАС уровнем. Если переполнение будет ликвидировано до истечения периода ожидания, то для того, чтобы восстановить передачу, отправляется второй кадр-пауза с нулевым значением времени ожидания.

Рис 2.1 – «Последовательность управления потоком IEEE 802.3»

Дуплексный режим работы и сопутствующее ему управление потоком являются дополнительными режимами для всех МАС-уровней Ethernet независимо от скорости передачи. Кадры-паузы идентифицируются как управляющие МАС-кадры по индивидуальным (зарезервированным) значениям поля длины/типа. Им также присваивается зарезервированное значение адреса приемника, чтобы исключить возможность передачи входящего кадра-паузы протоколам верхних уровней или на другие порты коммутатора.

В коммутаторах локальных сетей могут быть реализованы различные методы передачи кадров. Коммутация с промежуточным хранением (store-and-forward) –коммутатор копирует весь принимаемый кадр в буфер и производит его проверку на наличие ошибок. Если кадр содержит ошибки (не совпадает контрольная сумма, или кадр меньше 64 байт или больше 1518 байт), то он отбрасывается. Если кадр не содержит ошибок, то коммутатор находит адрес приемника в своей таблице коммутации и определяет исходящий интерфейс. Затем, если не определены никакие фильтры, он передает этот кадр приемнику. Этот способ передачи связан с задержками - чем больше размер кадра, тем больше времени требуется на его прием и проверку на наличие ошибок.

Коммутация без буферизации (cut-through) – коммутатор локальной сети копирует во внутренние буферы только адрес приемника (первые 6 байт после префикса) и сразу начинает передавать кадр, не дожидаясь его полного приема. Это режим уменьшает задержку, но проверка на ошибки в нем не выполняется. Существует две формы коммутации без буферизации:

Коммутация с быстрой передачей (fast-forward switching) – эта форма коммутации предлагает низкую задержку за счет того, что кадр начинает передаваться немедленно, как только будет прочитан адрес назначения. Передаваемый кадр может содержать ошибки. В этом случае сетевой адаптер, которому предназначен этот кадр, отбросит его, что вызовет необходимость повторной передачи этого кадра.

Коммутация с исключением фрагментов (fragment-free switching) – коммутатор фильтрует коллизионные кадры, перед их передачей. В правильно работающей сети, коллизия может произойти во время передачи первых 64 байт. Поэтому, все кадры, с длиной больше 64 байт считаются правильными.

Этот метод коммутации ждет, пока полученный кадр не будет проверен на предмет коллизии, и только после этого, начнет его передачу. Такой метод коммутации уменьшает количество пакетов передаваемых с ошибками.

Для использования в офисных целях, как правило применяются коммутаторы с коммутацией store-and-forward.

Классификация коммутаторов

Коммутаторы уровня 2 анализируют входящие кадры, принимают решение об их дальнейшей передаче и передают их пунктам назначения на основе МАС – адресов канального уровня модели OSI. Основное преимущество коммутаторов уровня 2 – прозрачность для протоколов верхнего уровня. Поскольку коммутатор функционирует на 2-м уровне, ему нет необходимости анализировать информацию верхних уровней модели OSI.

Коммутация 2-го уровня – аппаратная. Она обладает высокой производительностью, поскольку пакет данных не претерпевает изменений. Передача кадра в коммутаторе может осуществляться специализированным контроллером, называемым Application-Specific Integrated Circuits (ASIC). Эта технология, разработанная для коммутаторов, позволяет обеспечивать высокие скорости коммутации с минимальными задержками .

Существуют 2 основные причины использования коммутаторов 2-го уровня – сегментация сети и объединение рабочих групп. Высокая производительность коммутаторов позволяет разработчикам сетей значительно уменьшить количество узлов в физическом сегменте. Деление крупной сети на логические сегменты повышает производительность сети (засчет уменьшения объема передаваемых данных в отдельных сегментах), а также гибкость построения сети, увеличивая степень защиты данных, и облегчает управление сетью.

Несмотря на преимущества коммутации 2-го уровня, она все же имеет некоторые ограничения. Наличие коммутаторов в сети не препятствует распространению широковещательных кадров (broadcast) по всем сегментам сети, сохраняя ее прозрачность. Таким образом, очевидно, что для повышения производительности сети необходима функциональность 3-го уровня OSI модели.

Коммутатор уровня 3 принимает решение о коммутации на основании бóльшего количества информации, чем просто МАС-адрес. Коммутаторы 3-го уровня осуществляют коммутацию и фильтрацию на основе адресов канального (уровень 2) и сетевого (уровень 3) уровней OSI модели . Такие коммутаторы динамически решают, коммутировать (уровень 2) или маршрутизировать (уровень 3) входящий трафик. Коммутаторы 3 уровня выполняет коммутацию в пределах рабочей группы и маршрутизацию между рабочими группами.

Коммутаторы 3-го уровня функционально практически ничем не отличаются от традиционных маршрутизаторов и выполняют те же функции:

• определение оптимальных путей передачи данных на основе логических адресов (адресов сетевого уровня, традиционно IP-адресов)

• управление широковещательным и многоадресным трафиком

• фильтрация трафика на основе информации 3-го уровня

• IP- фрагментация.

Основное отличие между маршрутизаторами и коммутаторами 3-го уровня заключается в том, что в маршрутизаторах общего назначения принятие решения о пересылке пакетов обычно выполняется программным образом, а в коммутаторах обрабатывается специализированными контроллерами ASIC. Это позволяет коммутаторам выполнять маршрутизацию пакетов на скорости канала связи.


Дата добавления: 2018-02-15; просмотров: 847; Мы поможем в написании вашей работы!






Мы поможем в написании ваших работ!