Случайные события и их виды. Полная группа случайных событий



Случайное событие — подмножество множества исходов случайного эксперимента; при многократном повторении случайного эксперимента частота наступления события служит оценкой его вероятности.

Виды:

1)Несовместные- это события, при которых появление одного исключает другое

2)Независимые-это такие события, при которых вероятность одного из них не меняется от того, произошло другое или нет.

3)зависимые, если вероятность каждого из них зависит от того, произошло или нет другое событие

Случайные события (А, В, С, D …) называются несовместными, если появление одного из них исключает появление других событий в одном и том же испытании.

Полная группа событий: несколько несовместных событий образуют полную группу событий, если в результате каждого испытания может появляться только одно из событий этой группы и никакое другое.

 

Классическое определение вероятности случайного события

Под вероятностью случайного события понимают меру возможности осуществления данного события в конкретных условиях эксперимента (испытания). При классическом определении за вероятность события А принимается отношение числа благоприятствующих этому событию элементарных

исходов  к общему числу возможных исходов :

 

 

Поскольку в общем случае , то из этого определения следует, что вероятность произвольного случайного события принимает значения из отрезка [0, 1].

 

Относительная частота случайного события

Относительной частотой события называют отношение числа испытаний, в которых это событие появилось, к общему числу фактически произведенных испытаний.

Относительная частота событий вычисляется:

, или короче:

 

Теоремы сложения и умножения вероятностей

Суммой двух событий А и В называется событие С, состоящее в появлении хотя бы одного из событий А или В.

Теорема сложения вероятностей

Вероятность суммы двух несовместимых событий равна сумме вероятностей этих событий:

Р (А + В) = Р (А) + Р (В).

В случае, когда события А и В совместны, вероятность их суммы выражается формулой

Р (А +В) = Р (А) + Р (В) – Р (АВ), где АВ – произведение событий А и В.

Два события называются зависимыми, если вероятность одного из них зависит от наступления или не наступления другого. в случае зависимых событий вводится понятие условной вероятности события.

Условной вероятностью Р(А/В) события А называется вероятность события А, вычисленная при условии, что событие В произошло. Аналогично через Р(В/А) обозначается условная вероятность события В при условии, что событие А наступило.

Произведением двух событий А и В называется событие С, состоящее в совместном появлении события А и события В.

Теорема умножения вероятностей

Вероятность произведения двух событий равна вероятности одного из них, умноженной на условную вероятность другого при наличии первого:

Р (АВ) = Р(А) · Р(В/А), или Р (АВ) = Р(В) · Р(А/В).

Следствие. Вероятность совместного наступления двух независимых событий А и В равна произведению вероятностей этих событий:

Р (АВ) = Р(А) · Р(В).

Следствие. При производимых n одинаковых независимых испытаниях, в каждом из которых события А появляется с вероятностью р, вероятность появления события А хотя бы один раз равна     ​ 1 - (1 - р)n

 

Меры информации

В современных ЭВМ минимальной единицей измерения данных является бит — один двоичный разряд. Широко используются также более крупные единицы измерения: байт, равный 8 битам; килобайт, равный 1024 байтам; мегабайт, равный 1024 килобайтам, и т. д.

Семантическая мера информации используется для измерения смыслового содержания информации. Наибольшее распространение здесь получила тезаурусная мера, связывающая семантические свойства информации со способностью пользователя принимать поступившее сообщение. Тезаурус — это совокупность сведений, которыми располагает пользователь или система. Максимальное количество семантической информации потребитель получает при согласовании ее смыслового содержания со своим тезаурусом, когда поступающая информация понятна пользователю и несет ему ранее не известные сведения. С семантической мерой количества информации связан коэффициент содержательности, определяемый как отношение количества семантической информации к общему объему данных.

Прагматическая мера информации определяет ее полезность, ценность для процесса управления. Обычно ценность информации измеряется в тех же единицах, что и целевая функция управления системой.

 


Дата добавления: 2018-02-15; просмотров: 199; ЗАКАЗАТЬ РАБОТУ