СПИСОК ИСПОЛЬЗУЕМЫХ ИСТОЧНИКОВ. Тема: «Производство цветных металлов и сплавов»

УО «Жлобинский ГПТК»

 

Реферат

Тема: «Производство цветных металлов и сплавов»

Дисциплина: «Материаловедение»

 

Выполнил:

 учащийся учебной группы 53К

Витковский Борис Александрович

 

 

Жлобин 2012

СОДЕРЖАНИЕ

ВВЕДЕНИЕ…………………………………………………….……………3

1 ПРОИЗВОДСТВО МАГНИЯ…………………………………………….4

2 ПРОИЗВОДСТВО МЕДИ……………………………………………….10

3 ПРОИЗВОДСТВО АЛЮМИНИЯ………………………………………13

4 ПРОИЗВОДСТВО ТИТАНА……………………………………………15

ЗАКЛЮЧЕНИЕ…………………………………………………………….16

СПИСОК ИСПОЛЬЗУМЫХ ИСТОЧНИКОВ…………………………...17

 

 


 

ВВЕДЕНИЕ

Данная работа посвящена изучению основных способов добычи и переработки цветных металлов.

Проблема модернизации производства остается актуальной и на сегодняшний день, так как цветные металлы и их сплавы широко используются во многих отраслях промышленностей.

Целью данной работы является рассмотрение наиболее распространенных видов добычи и переработки цветных металлов.

При изучении данной темы были приняты попытки исследовать различные способы добычи цветных металлов, а так же способы их дальнейшей переработки с целью улучшения.

Главы, входящие в состав данного реферата, содержат наиболее общую информацию о некоторых цветных металлах. Для более полного представления о переработке металлов работа включает в себя три рисунка.

При изучении данной темы использовались литературные издания таких авторов как: Б.А. Кузьмин; Д.А. Браун; М.Н. Ларин; М.А. Касенко; В.М. Никифоров; В.В. Архипов и др.


ПРОИЗВОДСТВО МАГНИЯ

Магний— серебристо-белый металл. Важнейшее его физическое свойство - малая плотность. В электронной оболочке атома магния имеется двенадцать электронов. Два электрона, находящиеся на внешней орбите, легко могут быть оторваны, что приводит к образованию иона Mg'2+, поэтому магний двухвалентен во всех известных соединениях.

При хранении магния на сухом воздухе на его поверхности образуется окисная пленка, предохраняющая металл при небольшом нагревании (до 200 °С) от дальнейшего окисления; в этих условиях коррозионная стойкость чистого магния превышает стойкость низкоуглеродистой стали. Однако во влажном воздухе его коррозия значительно усиливается. На него практически не действует керосин, бензин и минеральные масла. Однако он не стоек в водных растворах солей и растворяется во многих минеральных и органических кислотах.

Магний в виде слитков или изделий не огнеопасен. Возгорание магния может произойти лишь при температуре, близкой к точке его плавления (651 °С) или после расплавления, если он не изолирован от кислорода воздуха. Покрытый флюсом, металл можно нагребать и плавить. Порошкообразный магний или тонкая магниевая лента легко загорается от спички и горит ослепительно белым пламенем. Магний немагнитен и не искрит при ударах или трении.

В свободном виде он не встречается, но входит в виде карбонатов, силикатов в состав многих горных пород, а также растворен в морской и озерной воде в виде хлоридов и сульфатов.

В настоящее время для получения магния применяют магнезит, доломит, карналлит, а также морскую воду и отходы ряда производств.

Природный минерал магнезиткроме карбоната магния MgC03 обычно содержит карбонат кальция, кварц, а также примеси других минералов, включающих окислы алюминия и железа. Для производства магния применяют только чистый каустический магнезит, полученный по реакции MgC03 = MgO + CO2 при нагревании (обжиге) природного магнезита до 700-900 °С.

Доломит - горная порода, представляющая собой двойной карбонат кальция и магния MgC03-СаС03. Доломиты обычно содержат примеси кварца, кальцита, гипса и др. Содержание и окраска примесей определяют цвет породы. Доломит широко распространен в природе и составляет около 0,1% всех горных пород, входящих в состав земной коры. Доломит, так же как и магнезит, предварительно обжигают до получения смеси окислов MgO и СаО.

Карналлит - природный хлорид магния и калия - очень гигроскопичное кристаллическое вещество, обычно окрашенное примесями в розовый, желтый пли серый цвет. Карналлит подвергают гидрохимической обработке для выделения из него брома и некоторого количества хлористого натрия и калия, в результате чего получается так называемый искусственный карналлит, который применяется в магниевой промышленности.

Неисчерпаемы запасы магния в виде бишофита MgCl2 * 6Н,0 в морской воде; в среднем там содержится 0,38% MgCl2. Кроме того, в морской воде имеются соединения магния MgS04 (0,17%) и MgBr2 (0,01%).

Морская вода пока редко используется для получения бишофита, так как во многих странах имеются соляные озера, в воде которых содержание хлористого магния значительно выше. В некоторых озёрах перекопской группы, например, содержание хлористого магния к концу лета достигает 15%. Кроме того, сырьем для получения магния теперь служат отходы ряда производств. При этом особенно, широко используют хлористый магний, получаемый при извлечении титана из его руд.

В основном магний получают электролитическим способом, важнейшими стадиями которого являются: а) получение чистых безводных солей магния; б) электролиз расплава этих солей и в) рафинирование магния.

Варианты электролитического способа получения магния различаются по составу солей, поступающих на электролиз (карналлит, хлористый магний и т.д.), и по способу получения этих солей (хлорирование магнезита, обезвоживание бишофита или карналлита). Хлорирование магнезита можно проводить аналогично хлорированию окиси титана. Обезвоживание карналлита обычно проводят в две стадии: вначале медленным нагреванием природного карналлита в трубчатых печах, а затем плавлением соединения КCl* MgCl2 * Н20 до полного удаления гидратной влаги.

Электролиз проводят в расплавленных хлоридах магния, калия, натрия и кальция, так как при электролизе водных растворов его солей из-за отрицательного потенциала магния на катоде выделяется только водород.

 

Рис 1— Схема электролизера для получения магния:

1 – перегородка ; 2 – пластина; 3 – труба; 4 – графитная плита

Анодами служат графитные плиты 4, катодами - стальные пластины 2. Так как плотность расплавленного электролита больше, чем плотность магния в этих же температурных условиях, то выделяющийся на катоде жидкий магний, не растворяясь в электролите, в виде капель всплывает на поверхность. На аноде выделяется газообразный хлоp, который также поднимается и выбрасывается из электролита. Во избежание взаимодействия хлора и магния и короткого замыкания анода и катода расплавленным магнием вверху устанавливают перегородку 1, которую принято называть диафрагмой. Во время электролиза расходуется хлористый магний, периодически вводимый в электролит.

Собирающийся на поверхности катодного пространства магний периодически удаляют. Выделяющийся в анодном пространстве хлор всасывают через трубы 3 и используют, например, для хлорирования окиси магния или окиси титана.

Магний можно получить электролизом чистого расплавленного безводного хлористого магния, однако высокая температура плавления, низкая электропроводность и другие неблагоприятные свойства этой соли вынуждают прибегать к электролитам более сложного состава. Практически удобнее вести электролиз карналлита, который обычно содержит в виде примеси хлористый натрий. Такой электролит обладает более низкой температурой плавления, более высокой электропроводностью и меньше растворяет магний. Поэтому при работе с ним достигается меньший расход электроэнергии.

Магниевые ванны соединяются между собой последовательно в серии по 60-100 шт. Число ванн в серии определяется напряжением источника постоянного электрического тока; напряжение ванны, которое зависит от ее конструкции, межполюсного расстояния, состава электролита, колеблется в пределах 5,5-7,5 В.

Обслуживание ванн заключается в выполнении следующих основных операций: а) питании электролитом; б) регулировании температуры; в) извлечении магния; г) удалении шлама.

Питание ванн электролитом. В процессе электролиза идет непрерывное разложение хлористого магния, поэтому для восполнения го расхода в ванну периодически вводят свежие расплавленные мористые соли. Наиболее удобно добавлять в электролит безводный Хлористый магний, получающийся при восстановлении хлорида титана магнием. В случае автономного расположения магниевого завода бишофит приходится предварительно обезвоживать. Можно вводить в ванну и безводный карналлит, но тогда необходимо сливать часть электролита, так как иначе в нем будет избыток хлорида калия. Из отработанного электролита получают калийные удобрения.

Регулирование температуры. Электролиз должен протекать при температуре 690-720 °С, при этом нижнего предела желательно придерживаться при питании ванн хлористым магнием, а верхнего - при питании карналлитом.

В магниевых ваннах для регулирования температуры не меняют межполюсное расстояние, как это принято при электролитическом получении алюминия, а изменяют состав, а с ним и электропроводность электролита. Так, например, чтобы поднять температуру электролита, следует залить в него больше чистого хлористого магния, что увеличит сопротивление электролита. Изменения температуры впределах 20-30 °С можно добиться, варьируя количество отсасываемых газов из катодного пространства ванны.

В случае перегрева электролита применяют загрузку твердого хлористого натрия; при чрезмерном падении температуры, например при выключении ванны, используют подогрев электролита переменным током, опуская в катодные ячейки нихромовые спирали.

Извлечение магния из электролизера. Это обычно производят не реже одного раза в сутки, применяя вакуумные ковши. Ковш предварительно нагревается вмонтированными в него нагревательными элементами и затем подается к ваннам мостовым краном. После создания в нем разрежения 730-800 кПа в ячейку ванны опускают всасывающую трубу и открывают клапан. Металл и часть электролита засасываются в ковш. Затем клапан закрывают и повторяют операцию в других ячейках ванны.

Удаление шлама. В электролит с хлористым магнием поступает и окись магния; кроме того, может протекать гидролиз электролита с образованием окиси магния. Она оседает на дно электролизера, увлекая за собой другие продукты и образуя шлам. Шлам удаляют один раз в два-три дня, не допуская значительного накопления его на дне ванны.

 

ПРОИЗВОДСТВО МЕДИ

Медь — металл красновато-розового цвета, плотностью 8940 кг/м3, с температурой плавления 1083 °С. Она обладает высокой электропроводностью, теплопроводностью, хорошо куется, прокатывается, но плохо отливается. Медь в чистом виде применяют для изготовления проводов, шин и других деталей в электротехнике. По электропроводности она уступает только серебру. Широко используют медь для изготовления различных сплавов.

В природе этот металл встречается в самородном виде и в виде руды. Из самородков выплавляют примерно 5% меди. Медные руды содержат небольшое количество меди. Пригодной для переработки считается руда, содержащая 0,5% меди и более. Для получения 1 т меди расходуется до 200 т руды. По химическому составу руды делят на сульфидные, в которых медь находится в виде соединений с серой, и окисленные, содержащие соединение меди с кислородом.

Примерно 80% меди выплавляют из сульфидных руд. Руды, содержащие менее 3% меди, перед плавкой обогащают обжигом флотационным способом. Флотационный способ основан на различном смачивании водой частиц руды, содержащих металл, и пустой породы. В обогащенной руде (концентрате) содержится от 10 до 40% меди.

Из руд медь получают двумя способами: пирометаллургическим и гидрометаллургический. Преимущественное распространение получил пирометаллургический способ. Он включает в себя следующие стадии производства: обжиг концентрата, плавку на штейн, получение черновой меди, рафинирование. Обжиг проводят в многоподовых печах или в печах кипящего слоя в окислительной среде при температуре до 850 °С. В процессе обжига из концентрата удаляют значительную часть серы и других примесей. Образуется обожженная шихта (огарок) и газ S02, который используют для производства серной кислоты. Следующим процессом является плавка обожженной шихты на штейн в шахтных или пламенных печах (рис. 2) при температуре до 1550°С. Наибольшее применение имеют пламенные печи. В них поддерживается слабоокислительная или нейтральная атмосфера, чтобы сернистое железо FeS не окислялось печными газами.

Рис.2— Схема пламенной печи для плавки медных руд и концентратов:

1 — под печи; 2 — воронки для загрузки руды; 3 — бункер с рудой; 4 — шихта на поду печи; 5 — отверстие для выпуска готового продукта

Продуктами плавки являются штейн и шлак. Штейн, имеющий большую, чем шлак, плотность, собирается на поду печи, а шлак образует верхний жидкий слой. Шлак выпускают по мере накопления через окно, расположенное в хвостовой части печи, а штейн — через отверстия (обычно два), расположенные в боковой стенке печи. Штейны содержат 16...60% Сu, 15...50% Fe и 23...28% S. Черновую медь получают из жидкого штейна, продувая его воздухом, в горизонтальных цилиндрических конвертерах с боковым дутьем или в вертикальных конвертерах. Впервые продувку штейна в конвертере осуществил в 1886 г. русский инженер В. А. Семенников. В процессе продувки, которая длится от 16 до 24 ч, выгорает сера. Черновая медь содержит до 2% различных примесей, и ее в дальнейшем рафинируют (очищают). Применяются два вида рафинирования: огневое и электрическое. Огневому рафинированию подвергают медь, содержащую незначительное количество благородных металлов. Рафинированная огневым способом медь содержит 99-99,7% Си. Ее выпускают из печи и разливают в слитки для прокатки или в анодные пластины для электрического рафинирования. Электрическим рафинированием получают медь высокой чистоты (не менее 99,9% Си) и извлекают находящееся в ней золото и серебро.

 

ПРОИЗВОДСТВО АЛЮМИНИЯ

Алюминий — серебристо-белый металл, обладающий хорошей электропроводностью и теплопроводностью. По электропроводности он уступает только серебру и меди. На воздухе в присутствии влаги алюминий покрывается синевато-серой пленкой, защищающей его от дальнейшего окисления. Плотность алюминия 2700 кг/м3, температура плавления 658°С. Главные природные запасы алюминия заключены в бокситах, алунитах, нефелинах и глинах. Наибольшее промышленное применение получили бокситы, которые содержат 30... 57% А1203 и пустую породу.

Технология производства алюминия включает следующие процессы: получение чистого глинозема из руд, получение первичного алюминия электролизом глинозема, рафинирование первичного алюминия. Чистый глинозем получают из бокситов щелочным, кислотным, электрометаллургическим и комбинированным методами.

Металлический алюминий получают по методу, разработанному профессором П. П. Федотьевым в 20-х годах XX в., — электролизом глинозема, растворенного в криолите. Электролизная ванна заключена в стальной кожух 4 (рис. 3), внутри она выложена угольными блоками 2. К подине подведены катодные шины 1, и весь корпус ванны является, таким образом, катодным устройством. Анодами служат угольные блоки 6, которые присоединены к электрододержателям 5. Через загруженную глиноземом и криолитом ванну пропускают постоянный ток силой 70...75 кА и напряжением 4...4,5 В. Шихта нагревается и расплавляется теплотой, выделяющейся при прохождении тока между анодом и катодом. Рабочая температура составляет 930...950°С. Образующийся в процессе электролиза жидкий алюминий собирается на подине ванны, откуда его выкачивают вакуум-насосом в ковш.

Рис 3— Схема электролизной ванны для получения алюминия:

1— катодные шины; 2— угольные плиты; 3— футеровка; 4— кожух; 5— анодные стержни; 6— угольные блоки; 7— шихта; 8— дно ванны

Для очистки расплавленного алюминия от растворенных в нем газов и примесей его продувают в течение 10...15 мин хлором.

После рафинирования хлором получают алюминий чистотой до 99,85%, а после дальнейшего электролитического рафинирования — чистотой до 99,99%.

 

ПРОИЗВОДСТВО ТИТАНА

Титан— металл серебристого цвета, плотностью 4500 кг/м3 с температурой плавления 1660 °С. Титан и его сплавы имеют большую коррозионную стойкость, жаропрочность и легко поддаются механической: обработке. Они хорошо куются, штампуются и прокатываются в листы, ленты и даже в фольгу. Наиболее распространенными рудами для производства титана являются ильменит FeO·TiO2 и рутил TiO2.

Существует несколько способов получения металлического титана из руд. Наиболее широкое применение на заводах получил магнийтермический способ производства титана, который включает следующие технологические операции: обогащение титановой руды; плавку на титановый шлак; получение четыреххлористого титана TiCl4; восстановление титана магнием; очистку титана. Из титана и его сплавов изготовляют насосы для перекачки агрессивных жидкостей, применяемых на животноводческих фермах, которые работают во много раз дольше аналогичных насосов, изготовленных из чугуна, стали и других материалов. Применение деталей из титана и его сплавов в двигателях внутреннего сгорания позволяет снизить массу этих двигателей примерно на 20%.


 

ЗАКЛЮЧЕНИЕ

Цели и задачи, поставленные при выполнении данной работы, были выполнены. Исследованы наиболее распространенные виды добычи и переработки таких цветных металлов как магний, алюминий, титан и медь. Выявлены преимущества и недостатки того или иного вида переработки.

После изучения данной темы можно придти к выводу, что добыча, и особенно переработка цветных металлов, является довольно сложным и хлопотливым процессом. Но в современном производстве без использования цветных металлов не обойтись, и поэтому идет постоянная модернизация способов добычи и переработки.


 

СПИСОК ИСПОЛЬЗУЕМЫХ ИСТОЧНИКОВ

 

1. Кузьмин Б.А., Самохоцкий А.И. Металлургия, металловедение и конструкционные материалы: учебник для механических и машиностроительных техникумов, М.: Высшая школа, 1984

2. Браун Д.А., Разыграев А.М. Технология металлов и конструкционные материалы, М.: Высшая школа, 1965

3. Технология металлов и других конструкционных материалов под ред. проф. Дубинина Н.П., М.: Высшая школа, 1969

4. Архипов В.В., Касенко М.А., Ларин М.Н. и др. Технология металлов, М.: Высшая школа, 1964

5. Никифоров В.М. Технология металлов и конструкционные материалы: учебник для средних специальных учебных заведений, Л.: Машиностроение, Ленинградское отделение, 1986.


Дата добавления: 2018-02-15; просмотров: 910; Мы поможем в написании вашей работы!

Поделиться с друзьями:




Мы поможем в написании ваших работ!