Производные единицы пространства и времени



Метрология - наука об измерениях.

Метрология (от греч. "метро" - мера, "логос" - учение) - наука об измерениях, методах и средствах обеспечения их единства и требуемой точности.

Современная метрология включает три составляющие: за­конодательную метрологию, фундаментальную (научную) и прак­тическую (прикладную) метрологию.

Метрология как наука и область практической деятельности возникла в древние времена. Основой системы мер в древне­русской практике послужили древнеегипетские единицы изме­рений, а они в свою очередь были заимствованы в Древней Греции и Риме. Естественно, что каждая система мер отлича­лась своими особенностями, связанными не только с эпохой, но и с национальным менталитетом.

Наименования единиц и их размеры соответствовали воз­можности осуществления измерений "подручными" способами, не прибегая к специальным устройствам. Так, на Руси основ­ными единицами длины были пядь и локоть, причем пядь слу­жила основной древнерусской мерой длины и означала расстояние между концами большого и указательного пальца взрослого человека. Позднее, когда появилась другая единица - аршин - пядь (1/4 аршина) постепенно вышла из употреб­ления.

Мера "локоть" пришла к нам из Вавилона и означала рас­стояние от сгиба локтя до конца среднего пальца руки (иногда - сжатого кулака или большого пальца).

С XVIII в. в России стали применяться дюйм, заимствован­ный из Англии (назывался он "палец"), а также английский фут. Особой русской мерой была сажень, равная трем локтям (около 152 см), и косая сажень (около 248 см).

Указом Петра I русские меры длины были согласованы с английскими, и это по существу - первая ступень гармониза­ции российской метрологии с европейской.

Метрическая система мер была введена во Франции в 1840 г. Значимость ее принятия в России подчеркнул Д.И. Менделеев, предсказав большую роль всеобщего распростране­ния метрической системы как средства содействия "будущему желанному сближению народов".

С развитием науки и техники требовались новые измерения и новые единицы измерения, что в свою очередь стимулирова­ло совершенствование фундаментальной и прикладной метро­логии.

Первоначально прототип единиц измерения искали в при­роде, исследуя макрообъекты и их движение. Так, секундой стали считать часть периода обращения Земли вокруг оси. По­степенно поиски переместились на атомный и внутриатомный уровень. В результате уточнялись "старые" единицы (меры) и появились новые. Так, в 1983 г. было принято новое определе­ние метра: это длина пути, проходимого светом в вакууме за 1/299792458 долю секунды. Это стало возможным после того, как скорость света в вакууме (299792458 м/с) метрологи приня­ли в качестве физической константы. Интересно отметить, что теперь с точки зрения метрологических правил метр зависит от секунды.

В 1988 г. на международном уровне были приняты новые константы в области измерений электрических единиц и вели­чин, а в 1989 г. принята новая Международная практическая температурная шкала МТШ-90.

На этих нескольких примерах видно, что метрология как наука динамично развивается, что, естественно, способствует совершенствованию практики измерений во всех других науч­ных и прикладных областях.

Качеством и точностью измерений определяется возмож­ность разработки принципиально новых приборов, измеритель­ных устройств для любой сферы техники, что говорит в пользу опережающих темпов развития науки и техники измерений, т.е. метрологии. Вместе с развитием фундаментальной и практиче­ской метрологии происходило становление законодательной метрологии.

Законодательная метрология - это раздел метрологии, вклю­чающий комплексы взаимосвязанных и взаимообусловленных общих правил, а также другие вопросы, нуждающиеся в регла­ментации и контроле со стороны государства, направленные на обеспечение единства измерений и единообразия средств изме­рений.

Законодательная метрология служит средством государст­венного регулирования метрологической деятельности посред­ством законов и законодательных положений, которые вводят­ся в практику через Государственную метрологическую службу и метрологические службы государственных органов управле­ния и юридических лиц. К области законодательной метроло­гии относятся испытания и утверждение типа средств измере­ний и их поверка и калибровка, сертификация средств измере­ний, государственный метрологический контроль и надзор за средствами измерений.

Метрологические правила и нормы законодательной метро­логии гармонизованы с рекомендациями и документами соот­ветствующих международных организаций. Тем самым законо­дательная метрология способствует развитию международных экономических и торговых связей и содействует взаимопони­манию в международном метрологическом сотрудничестве.

Рассмотрим содержание основных понятий фундаменталь­ной и практической метрологии.

Измерения как основной объект метрологии связаны как с физическими величинами, так и с величинами, относящимися к другим наукам (математике, психологии, медицине, обществен­ным наукам и др.). Далее будут рассматриваться понятия, отно­сящиеся к физическим величинам.

Физической величиной называют одно из свойств физического объекта (явления, процесса), которое является общим в качест­венном отношении для многих физических объектов, отличаясь при этом количественным значением. Так, свойство "прочность". в качественном отношении характеризует такие материалы, как сталь, дерево, ткань, стекло и многие другие, в то время как степень (количественное значение) прочности - величина для каждого из них совершенно разная.

Измерением называют совокупность операций, выполняемых с помощью технического средства, хранящего единицу величи­ны и позволяющего сопоставить с нею измеряемую величину. Полученное значение величины и есть результат измерений. Интересно отметить соответствие в целом этой современной трактовки с толкованием данного термина философом П.А. Флоренским, которое вошло в "Техническую энциклопедию" издания 1931 г.: "Измерение - основной познавательный про­цесс науки и техники, посредством которого неизвестная вели­чина количественно сравнивается с другою, однородною с ней и считаемою известной".

Одна из главных задач метрологии - обеспечение единства измерений - может быть решена при соблюдении двух условий, которые можно назвать основополагающими:

· выражение результатов измерений в единых узаконенных единицах;

· установление допустимых ошибок (погрешностей) ре­зультатов измерений и пределов, за которые они не должны выходить при заданной вероятности.

Погрешностью называют отклонение результата измерений от действительного (истинного) значения измеряемой величи­ны. При этом следует иметь в виду, что истинное значение фи­зической величины считается неизвестным и применяется в тео­ретических исследованиях; действительное значение физиче­ской величины устанавливается экспериментальным путем в предположении, что результат эксперимента (измерения) в мак­симальной степени приближается к истинному значению. По­грешности измерений приводятся обычно в технической доку­ментации на средства измерений или в нормативных документах. Правда, если учесть, что погрешность зависит еще и от ус­ловий, в которых проводится само измерение, от эксперимен­тальной ошибки методики и субъективных особенностей чело­века в случаях, где он непосредственно участвует в измерениях, то можно говорить о нескольких составляющих погрешности измерений либо о суммарной погрешности.

Единство измерений, однако, не может быть обеспечено лишь совпадением погрешностей. Требуется еще и достовер­ность измерений, которая говорит о том, что погрешность не выходит за пределы отклонений, заданных в соответствии с по­ставленной целью измерений. Есть еще и понятие точности измерений, которое характеризует степень приближения по­грешности измерений к нулю, т.е. полученного при измерении значения к истинному значению измеряемой величины.

Обобщает все эти положения современное определение по­нятия единство измерений - состояние измерений, при котором их результаты выражены в узаконенных единицах, а погрешно­сти известны с заданной вероятностью и не выходят за уста­новленные пределы.

Как выше отмечено, мероприятия по реальному обеспече­нию единства измерений в большинстве стран мира установле­ны законами и входят в функции законодательной метрологии, к рассмотрению которых обратимся позже.

А сейчас перейдем к содержанию основного объекта метроло­гии - измерений.

Виды измерений.

Измерения различают по способу получения информации, по характеру изменений измеряемой величины в процессе из­мерений, по количеству измерительной информации, по отно­шению к основным единицам.

По способу получения информации измерения разделяют на прямые, косвенные, совокупные и совместные.

Прямые измерения - это непосредственное сравнение физи­ческой величины с ее мерой. Например, при определении дли­ны предмета линейкой происходит сравнение искомой величи­ны (количественного выражения значения длины) с мерой, т.е. линейкой.

Косвенные измерения отличаются от прямых тем, что искомое значение величины устанавливают по результатам прямых из­мерений таких величин, которые связаны с искомой опреде­ленной зависимостью. Так, если измерить силу тока амперметром, а напряжение вольтметром, то по известной функцио­нальной взаимосвязи всех трех величин можно рассчитать мощ­ность электрической цепи.

Совокупные измерения сопряжены с решением системы урав­нений, составляемых по результатам одновременных измерений нескольких однородных величин. Решение системы уравнений дает возможность вычислить искомую величину.

Совместные измерения - это измерения двух или более не­однородных физических величин для определения зависимости между ними.

Совокупные и совместные измерения часто применяют в измерениях различных параметров и характеристик в области электротехники.

По характеру изменения измеряемой вели­чины в процессе измерений бывают статистические, динамиче­ские и статические измерения.

Статистические измерения связаны с определением харак­теристик случайных процессов, звуковых сигналов, уровня шу­мов и т.д.

Статические измерения имеют место тогда, когда измеряе­мая величина практически постоянна.

Динамические измерения связаны с такими величинами, ко­торые в процессе измерений претерпевают те или иные изме­нения.

Статические и динамические измерения в идеальном виде на практике редки.

По количеству измерительной информации различают однократные и многократные измерения.

Однократные измерения - это одно измерение одной вели­чины, т.е. число измерений равно числу измеряемых величин. Практическое применение такого вида измерений всегда со­пряжено с большими погрешностями, поэтому следует прово­дить не менее трех однократных измерений и находить конеч­ный результат как среднее арифметическое значение.

Многократные измерения характеризуются превышением числа измерений количества измеряемых величин. Обычно минимальное число измерений в данном случае больше трех. Преимущество многократных измерений - в значительном снижении влияний случайных факторов на погрешность изме­рения.

По отношению к основным единицам измере­ния делят на абсолютные и относительные.

Абсолютными измерениями называют такие, при которых ис­пользуются прямое измерение одной (иногда нескольких) ос­новной величины и физическая константа. Так, в известной формуле Эйнштейна Е=mс2 масса (m) - основная физическая величина, которая может быть измерена прямым путем (взвешиванием), а скорость света (с) - физическая константа.

Относительные измерения базируются на установлении от­ношения измеряемой величины к однородной, применяемой в качестве единицы. Естественно, что искомое значение зависит от используемой единицы измерений.

С измерениями связаны такие понятия, как "шкала измере­ний", "принцип измерений", "метод измерений".

Шкала измерений - это упорядоченная совокупность значений физической величины, которая служит основой для ее из­мерения. Поясним это понятие на примере температурных шкал.

В шкале Цельсия за начало отсчета принята температура таяния льда, а в качестве основного интервала (опорной точки) - температура кипения воды. Одна сотая часть этого интервала является единицей температуры (градус Цельсия). В температур­ной шкале Фаренгейта за начало отсчета принята температура таяния смеси льда и нашатырного спирта (либо поваренной со­ли), а в качестве опорной точки взята нормальная температура тела здорового человека. За единицу температуры (градус Фа­ренгейта) принята одна девяносто шестая часть основного ин­тервала. По этой шкале температура таяния льда равна + 32°F, а температура кипения воды + 212°F. Таким образом, если по шкале Цельсия разность между температурой кипения воды и таяния льда составляет 100°С, то по Фаренгейту она равна 180°F. На этом примере мы видим роль принятой шкалы как в количественном значении измеряемой величины, так и в ас­пекте обеспечения единства измерений. В данном случае требу­ется находить отношение размеров единиц, чтобы можно было сравнить результаты измерений, т.е. t°F/t°C.

В метрологической практике известны несколько разновидно­стей шкал: шкала наименований, шкала порядка, шкала интер­валов, шкала отношений и др.

Шкала наименований - это своего рода качественная, а не количественная шкала, она не содержит нуля и единиц изме­рений. Примером может служить атлас цветов (шкала цветов). Процесс измерения заключается в визуальном сравнении ок­рашенного предмета с образцами цветов (эталонными образца­ми атласа цветов). Поскольку каждый цвет имеет немало вари­антов, такое сравнение под силу опытному эксперту, который обладает не только практическим опытом, но и соответствую­щими особыми характеристиками зрительных возможностей.

Шкала порядка характеризует значение измеряемой величины в баллах (шкала землетрясений, силы ветра, твердости фи­зических тел и т.п.).

Шкала интервалов (разностей) имеет условные нулевые зна­чения, а интервалы устанавливаются по согласованию. Такими шкалами являются шкала времени, шкала длины.

Шкала отношений имеет естественное нулевое значение, а единица измерений устанавливается по согласованию. Напри­мер, шкала массы (обычно мы говорим "веса"), начинаясь от нуля, может быть градуирована по-разному в зависимости от требуемой точности взвешивания (сравните бытовые и анали­тические весы).

Физические величины как объект измерений.

Объектом измерений являются физические величины, кото­рые принято делить на основные и производные.

Основные величины не зависимы друг от друга, но они могут служить основой для установления связей с другими физиче­скими величинами, которые называют производными от них. Вспомним уже упомянутую формулу Эйнштейна, в которую входит основная единица - масса, а энергия - это производ­ная единица, зависимость между которой и другими единицами определяет данная формула. Основным величинам соответст­вуют основные единицы измерений, а производным - произ­водные единицы измерений.

Совокупность основных и производных единиц называется системой единиц физических величин.

Первой системой единиц считается метрическая система где, как уже отмечено выше, за основную единицу длины был принят метр, за единицу веса* - вес 1 см3 химически чистой воды при температуре около +4°С - грамм (позже - кило­грамм). В 1799 г. были изготовлены первые прототипы (эталоны) метра и килограмма. Кроме этих двух единиц метри­ческая система в своем первоначальном варианте включала еще и единицы площади (ар - площадь квадрата со стороной 10 м), объема (стер, равный объему куба с ребром 10 м), вместимости (литр, равный объему куба с ребром 0,1 м).

Таким образом, в метрической системе еще не было четкого подразделения единиц величин на основные и производные.

Понятие системы единиц как совокупности основных и про­изводных впервые предложено немецким ученым К.Ф. Гауссом в 1832 г. В качестве основных в этой системе были приняты: единица длины - миллиметр, единица массы - миллиграмм, единица времени - секунда. Эту системы единиц назвали абсо­лютной.

В 1881 г. была принята система единиц физических величин СГС, основными единицами которой были: сантиметр - еди­ница длины, грамм - единица массы, секунда - единица вре­мени. Производными единицами системы считались единица силы - килограмм-сила и единица работы - эрг. Неудобство системы СГС состояло в трудностях пересчета многих единиц в другие системы для определения их соотношения.

В начале XX в. итальянский ученый Джорджи предложил еще одну систему единиц, получившую название МКСА (в рус­ской транскрипции) и довольно широко распространившуюся в мире. Основные единицы этой системы: метр, килограмм, се­кунда, ампер (единица силы тока), а производные: единица си­лы - ньютон, единица энергии - джоуль, единица мощности - ватт.

Были и другие предложения, что указывает на стремление к единству измерений в международном аспекте. В то же время да­же сейчас некоторые страны не отошли от исторически сложив­шихся у них единиц измерения. Известно, что Великобритания, США, Канада основной единицей массы считают фунт, причем его размер в системе "британских имперских мер" и "старых вин­честерских мер" различен.

Наиболее широко распространена во всем мире Междуна­родная система единиц СИ. Рассмотрим ее сущность.

Международная система единиц (СИ)

1. Установление единой международной системы единиц.

Наличие ряда систем физических величин, а также значительного числа внесистемных единиц, неудобства, связанные с пересчетом, при переходе от одной системы единиц к другой, выдвинули требования унификации единиц измерений. Рост научно-технических и экономических связей между разными странами обуславливал необходимость такой унификации в международном масштабе.

Требовалась единая система физических величин, практически удобная и охватывающая разные области измерений.

Система, основанная на утвержденных в 1954 г. шести основных единицах, была названа международной системой единиц, сокращенно СИ. Был утвержден перечень шести основных, двух дополнительных и первый список двадцати семи производных единиц, а также приставки для образования кратных и дольных единиц.

  Международная система единиц имеет ряд достоинств, важнейшими из которых являются:

1. универсальность – охват ею всех областей науки, техники, народного хозяйства;

2. унификация единиц для всех видов измерений;

3. применение удобных для практики основных и большинства производных единиц;

4.  когерентность (связность, согласованность) системы, коэффициенты пропорциональности в физических уравнениях, определяющих единицы производных величин, равны безразмерной единице;

5. четкое разграничение в СИ единиц массы (килограмма) и силы (ньютона);

6. упрощение записи уравнений и формул;

7. облегчение педагогического процесса в средней и высшей школах;

8. лучшее взаимопонимание при дальнейшем развитии научно-технических и экономических связей между различными странами.

2. Основные единицы СИ.      

     В 1954 г. X Генеральная конференция по мерам и весам установила шесть основных единиц (метр, килограмм, секунда, ампер, градус Кельвина и света) практической системы единиц для международных отношений. Одновременно Международный комитет по мерам и весам выделил из своего состава комиссию по разработке единой международной системы единиц.  

 В 1971 г. XIX Генеральная конференция по мерам и весам приняла основную седьмую единицу СИ – единицу количества вещества – моль, единица силы света получила название кандела.

 3. Дополнительные единицы СИ

Международная система единиц включает в себя две дополнительные единицы – для измерения плоского и телесного углов.

Дополнительные единицы СИ используются для образования единиц угловой скорости, углового ускорения и некоторых других величин.

Сами по себе радиан и стерадиан применяются в основном для теоретических построений и расчетов, для практических же измерений их не применяют, т.к. большинство важных для практических значений углов (полный угол, прямой угол и т.д.) в радианах выражаются числами (2π, π/2 и т.д.)

Практически плоские углы чаще всего измеряют в градусах, минутах и секундах и в этих единицах проградуировано большинство угломерных приборов. Применяют и другие угловые единицы (полный оборот, прямой угол, град., равный 0,01 прямого и т.д.)

4. Производные единицы

Производные единицы Международной системы единиц образуются с помощью простейших уравнений между величинами (определяющих уравнений), в которых числовые коэффициенты равны единице).

Основные единицы СИ

     


          Величина                                                           Единица

                                                                                   

      Наименование    Размерность   Наименование   Обозначение

                                                                                                      русский  международ.                                          

                                                                                              

1. Длина                                    L                метр               м          m

 2. Масса                                   M               килограмм        кг          kg

 3. Время                                    Т                 секунда           с           s

 4. Сила эл. тока                        I                     ампер             А        А

 5. Сила света                           J                   кандела         кд        cd

 6. Термодинам. тем-ра            θ          кельвин          К         К

 7. Количество вещества          N           моль          моль     mol

 

Дополнительные единицы

 

1. Плоский угол                      -                радиан          кд          cd

2. Телесный угол                       -              стерадиан       рад         rad

  

Производные единицы пространства и времени

1. Площадь                             L2           квадратный метр    м 2         m2

2. Объем, вместимость              L3            кубический метр      м3                    m3

3. Скорость                             LT-1          метр в секунду          м/с              m/s

4. Ускорение                           LT-2      метр в секунду в 2 м/с2        m/s2     

5. Частота периодич.             

процесса                              T-1       герц                          Гц          Hr

6. Частота вращения              T-1       секунда в –1 степени            с-1                       s-1

7. Угловая скорость               T-1       радиан в секунду             рад/с      rad/s

8. Угловое ускорение              T-2 радиан на секунду в 2    рад/с2     rad/s2


Дата добавления: 2020-11-15; просмотров: 150; Мы поможем в написании вашей работы!

Поделиться с друзьями:






Мы поможем в написании ваших работ!