Вырожденность или избыточность.



Понятие ген .Строение и свойства гена .

Ген – участок ДНК, с которого копируется РНК, элементарная структурная и функциональная единица наследственности живых организмов, включающий промотор, транскрибируемую последовательность и терминатор. Промотор – небольшой участок гена, к которому присоединяется фермент транскрипции. Кодирующая часть содержит информацию о последовательности нуклеотидов в РНК. Терминатор – сигнальный участок о завершении транскрипции. Термин «ген» был предложен в 1909 году датским ботаников Вильгельмом Йогансеном.

Строение гена

На молекуле ДНК синтезируется (путем транскрипции) не только информационная, она же матричная, РНК (иРНК, или мРНК), но и другие типы РНК. Поэтому постулат молекулярной генетики «один ген — один фермент» не совсем верен. Ген не обязательно кодирует синтез полипептида. Существуют гены, кодирующие синтез функциональных РНК.

У эукариот транскрибируемая часть гена обычно состоит из чередующихся участков: интронов и экзонов. После того как иРНК синтезируется, из нее вырезаются интроны, а экзоны сшиваются между собой. Данный процесс называется сплайсингом. При этом экзоны могут быть сшиты по-разному: меняться их чередование, какие-то участки могут быть «выброшены». Таким образом, один ген может отвечать за образование нескольких разных зрелых иРНК, а, следовательно, синтез разных полипептидов. Тогда считать ли его геном, или это уже несколько генов? Ведь ген — это функциональная единица наследственности, а тут получается несколько функций. В строении гена как определенного участка ДНК выделяют регуляторные области, которые расположены в начале и в конце. К ним относят промотор, энхансер, сайленсер, участки краевых экзонов гена, которые не транскрибируются.

На промоторе образуется ферментативный комплекс (ДНК-РНК-полимераза), позволяющий запустить процесс транскрипции (синтез РНК). Энхансеры и сайленсеры отвечают за усиление или ослабление транскрипции. Они не всегда располагаются рядом с геном, могут контролировать несколько генов. Один и тот же участок ДНК в разных клетках может выступать то в роли энхансера, то в роли сайленсера, в зависимости от прикрепляющихся к этим участкам различных регуляторных белков. У прокариот одна регуляторная область может обрамлять несколько генов . Такой комплекс  называют «оперон». В регуляторной области оперона у прокариот перед промотором находится оператор. В другом месте ДНК есть ген-регулятор, кодирующий синтез белка-репрессора. Если данный белок синтезирован и связан с оператором, то транскрипции генов внутри оперона не будет происходить. Молекула ДНК состоит не только из генов . В ее строении также выделяют межгенные последовательности , различные повторы , инсуляторы и др. Таким образом, ДНК не представляет собой механический набор генов. В геноме гены взаимодействуют между собой, составляют сложную систему, что отражается и в строении генов.

Свойства гена

- специфичность (каждый структурный ген обладает только ему присущим порядком расположения нуклеотидов и детерминирует синтез определенного полипептида)                                                                                                                -целостность ( при программировании синтеза полипептида ген выступает как неделимая единица)                                                                                             -дискретность (наличие субъединиц - нуклеотидов)                                                      -стабильность (относительно устойчивы)                                                                 -лабильность (способны мутировать)

Генетический код , свойства генетического кода .

Генетический код

Генетический код – это система записи наследственной информации в молекулах нуклеиновых кислот, основанная на определённом чередовании последовательностей нуклеотидов в ДНК или РНК, образующих кодоны, соответствующие аминокислотам в белке.

Свойства генетического кода

Генетический код имеет несколько свойств.

Триплетность.

а. Триплетность. Генетический код, как и многое сложно организованные система имеет наименьшую структурную и наименьшую функциональную единицу. Триплет – наименьшая структурная единица генетического кода. Состоит она из трёх нуклеотидов. Кодон – наименьшая функциональная единица генетического кода. Как правило, кодонами называют триплеты иРНК. В генетическом коде кодон выполняет несколько функций.                      Во-первых, главная его функция заключается в том, что он кодирует одну аминокислоту. Во-вторых, кодон может не кодировать аминокислоту, но, в этом случае, он выполняет другую функцию (см. далее). Как видно из определения, триплет – это понятие, которое характеризует элементарную структурную единицу генетического кода (три нуклеотидов). Кодон – характеризует элементарную смысловую единицу генома – три нуклеотида определяют присоединение к полипептидной цепочки одной аминокислоты.

Вырожденность или избыточность.

61 из 64 триплетов кодируют 20 аминокислот. Такое трёхразовое превышение числа триплетов над количеством аминокислот позволяет предположить, что в переносе информации могут быть использованы два варианта кодирования. Во-первых, не все 64 кодона могут быть задействованы в кодировании 20 аминокислот, а только 20 и, во-вторых, аминокислоты могут кодироваться несколькими кодонами. Исследования показали, что природа использовала последний вариант.

Его предпочтение очевидно. Если бы из 64 варианта триплетов в кодировании аминокислот участвовало только 20, то 44 триплета (из 64) оставались бы не кодирующими, т.е. бессмысленными (нонсенс-кодонами). Ранее мы указывали, насколько опасно для жизнедеятельности клетки превращение кодирующего триплета в результате мутации в нонсенс-кодон - это существенно нарушает нормальную работу РНК-полимеразы, приводя в конечном итоге к развитию заболеваний. В настоящее время в нашем геноме три кодона являются бессмысленными, а теперь представьте, что было бы если число нонсенс-кодонов увеличится в примерно в 15 раз. Понятно, что в такой ситуации переход нормальных кодонов в нонсенс-кодоны будет неизмеримо выше.

Код, при котором одна аминокислота кодируется несколькими триплетами, называется вырожденным или избыточным. Почти каждой аминокислоте соответствует несколько кодонов. Так, аминокислота лейцин может кодироваться шестью триплетами — УУА, УУГ, ЦУУ, ЦУЦ, ЦУА, ЦУГ. Валин кодируется четырьмя триплетами, фенилаланин — двумя и только триптофан и метионинкодируются одним кодоном. Свойство, которое связано с записью одной и той же информации разными символами носит названиевырожденность.

Однозначность.

Каждый триплет (кроме бессмысленных) кодирует только одну аминокислоту. Таким образом, в направлении кодон – аминокислота генетический код однозначен, в направлении аминокислота – кодон – неоднозначен (вырожденный).

Однозначен

àКодон аминокислота

ßВырожденный

И в этом случае необходимость однозначности в генетическом коде очевидна. При другом варианте при трансляции одного и того же кодона в белковую цепочку встраивались бы разные аминокислоты и в итоге формировались белков с различной первичной структурой и разной функцией. Метаболизм клетки перешёл бы в режим работы «один ген – несколько поипептидов». Понятно, что в такой ситуации регулирующая функция генов была бы полностью утрачена

Полярность.

Считывание информации с ДНК и с иРНК происходит только в одном направлении. Полярность имеет важное значение для определения структур высшего порядка . Ранее мы говорили о том, что структуры низшего порядка определяют структуры более высшего порядка. Третичная структура и структуры более высокого порядка у белков, формируются сразу же как только синтезированная цепочка РНК отходит от молекулы ДНК или цепочка полипептида отходит от рибосомы. В то время когда свободный конец РНК или полипептида приобретает третичную структуру, другой конец цепочки ещё продолжает синтезироваться на ДНК (если транскрибируется РНК) или рибосоме . Поэтому однонаправленный процесс считывания информации (при синтезе РНК и белка) имеет существенное значение не только для определения последовательности нуклеотидов или аминокислот в синтезируемом веществе, но для жёсткой детерминации вторичной, третичной и т.д. структур.

Неперекрываемость.

Сущность не перекрывающего кода заключается в том, что нуклеотид одного кодона не может быть одновременно нуклеотидом другого кодона. Если бы код был перекрывающим, то последовательность из семи нуклеотидов (ГЦУГЦУГ) могла кодировать не две аминокислоты  как в случае с не перекрывающимся кодом, а три  или пять . В последних двух случаях мутация любого нуклеотида привела бы к нарушению в последовательности двух, трёх и т.д. аминокислот.

Однако установлено, что мутация одного нуклеотида всегда нарушает включение в полипептид одной аминокислоты. Это существенный довод в пользу того, что код является не перекрывающимся.

Поясним это на рисунке 34. Жирными линиями показаны триплеты кодирующие аминокислоты в случае не перекрывающегося и перекрывающегося кода. Эксперименты однозначно показали, что генетический код является не перекрывающимся. Не вдаваясь в детали эксперимента отметим, что если заменить в последовательности нуклеотидов  третий нуклеотид У (отмечен звёздочкой) на какой-либо другой то:

1. При неперекрывающемся коде контролируемый этой последовательностью белок имел бы замену одной (первой ) аминокислоте (отмечена звёздочками).

2. При перекрывающемся коде в варианте А произошла бы замена в двух (первой и второй) аминокислотах (отмечены звёздочками). При варианте Б замена коснулась бы трёх аминокислот (отмечены звёздочками).

Компактность.

Между кодонами нет знаков препинания. Иными словами триплеты не отделены друг от друга, например, одним ничего не значащим нуклеотидом. Отсутствие в генетической коде «знаков препинания» было доказано в экспериментах.

Универсальность.

Код един для всех организмов живущих на Земле. Прямое доказательство универсальности генетического кода было получено при сравнении последовательностей ДНК с соответствующими белковыми последовательностями. Оказалось, что во всех бактериальных и эукариотических геномах используется одни и те же наборы кодовых значений. Есть и исключения, но их не много. Первые исключения из универсальности генетического кода были обнаружены в митохондриях некоторых видов животных. Это касалось кодона терминатора УГА, который читался так же как кодон УГГ, кодирующий аминокислоту триптофан. Были найдены и другие более редкие отклонения от универсальности.

Биосинтез белка

Биосинтез белка – важная часть пластического обмена всех клеток. Рассматривает данный процесс наука биология. В результате образуются специфичные вещества, характерные для данного организма. Происходит воспроизведение наследственной информации.

Все этапы биосинтеза белка

1. Транскрипция (переписывание информации с ДНК на иРНК). В определенном участке ДНК разрываются водородные связи, получается две одинарных цепочки. На одной из них по принципу комплементарности строится иРНК. Затем она отсоединяется и уходит в цитоплазму, а цепочки ДНК снова соединяются между собой.

2. Процессинг (только у эукариот) – созревание иРНК: удаление из нее участков, не кодирующих белок, а так же присоединение управляющих участков. Процессинг —это процесс превращения транскрипта (пре-иРНК, полученной при транскрипции) в зрелую иРНК, пригодную для трансляции. Стадии процессинга:

1) Кэпирование

К 5'-концу транскрипта присоединяется кэп («шапочка», англ.), состоящая из модифицированного гуанина.

2) Полиаденирование    

К 3'-концу транскрипта присоединяется от 100 до 200 адениновых нуклеотидов.

3) Сплайсинг

Это процесс вырезания из транскрипта нужных участков и склеивания их между собой. У эукариот из транскрипта выбрасывается в среднем 5/6 длины.

3. Экспорт иРНК из ядра в цитоплазму (только у эукариот). Происходит через ядерные поры; всего экспортируется примерно 5% от общего количества иРНК в ядре.

4. Синтез аминоацил-тРНК. В цитоплазме имеется 61 фермент аминоацил-тРНК-синтетаза. Он комплементарно узнает аминокислоту и тРНК, которая должна ее переносить, и соединяет их между собой, при этом затрачивается 1 АТФ.

5. Трансляция (синтез белка). Внутри рибосомы к кодонам иРНК по принципу комплементарности присоединяются антикодоны тРНК. Рибосома соединяет между собой аминокислоты, принесенные тРНК, получается белок.

Инициация.

1. Узнавание стартового кодона (AUG), сопровождается присоединением тРНК аминоацилированной метионином (М) и сборкой рибосомы из большой и малой субъединиц.

Элонгация.

2. Узнавание текущего кодона соответствующей ему аминоацил-тРНК (комплементарное взаимодействие кодона мРНК и антикодона тРНК увеличено).

3. Присоединение аминокислоты, принесённой тРНК, к концу растущей полипептидной цепи.

4. Продвижение рибосомы вдоль матрицы, сопровождающееся высвобождением молекулы тРНК.

5. Аминоацилирование высвободившейся молекулы тРНК соответствующей ей аминоацил-тРНК-синтетазой.                                                                               6. Присоединение следующей молекулы аминоацил-тРНК, аналогично стадии (2).

7. Движение рибосомы по молекуле мРНК до стоп-кодона (в данном случае UAG).

Терминация.

Узнавание рибосомой стоп-кодона сопровождается (8) отсоединением новосинтезированного белка и в некоторых случаях (9) диссоциацией рибосомы.

6. Созревание белка. Вырезание из белка ненужных фрагментов, присоединение небелковых компонентов (например, гема), соединение нескольких полипептидов в четвертичную структуру.

13 Г.Мендель - основоположник генетики , заслуги Г.Менделя .

Заслуги Менделя.

 Во-первых, Мендель создал научные принципы описания и исследования гибридов и их потомства, и применил алгебраическую систему символов и обозначений признаков, что представляло собой важное концептуальное новоВведение.

Во-вторых, Мендель в неявной форме высказал идею дискретности и бинарности наследственных задатков каждый признак контролируется материнской и отцовской парой задатков или генов, как их потом стали называть, которые через родительские половые клетки передаются гибридам и никуда не исчезают. Парность задатков, парность хромосом, двойная спираль ДНК логическое следствие и магистральный путь развития генетики 20 века на основе идей Менделя.

Но главной заслугой Менделя было создание трх его известнейших на весь мир законов. 2.3


Дата добавления: 2020-01-07; просмотров: 330; Мы поможем в написании вашей работы!

Поделиться с друзьями:






Мы поможем в написании ваших работ!