График логарифмической функции



Как правильно построить координатные оси?

На практике контрольные работы почти всегда оформляются студентами в отдельных тетрадях, разлинованных в клетку. Зачем нужна клетчатая разметка? Клетка необходима как раз для качественного и точного оформления чертежей.

Любой чертеж графика функции начинается с координатных осей.

Чертежи бывают двухмерными и трехмерными.

Сначала рассмотрим двухмерный случай.

1) Чертим координатные оси. Чертить всегда стараемся аккуратно и не криво. Стрелочки тоже не должны быть похожи на бороду Папы Карло.

2) Подписываем оси.

3) Задаем размерность по осями: рисуем ноль и две единички. При выполнении чертежа самая удобная и часто встречающаяся размерность: 1 единица = 2 клеточки (чертеж слева).

Графики и основные свойства элементарных функций

График линейной функции

Линейная функция задается уравнением . График линейной функций представляет собой прямую. Для того, чтобы построить прямую достаточно знать две точки.

Пример 1

Построить график функции .

При оформлении заданий координаты точек обычно сводятся в таблицу:

При оформлении чертежа всегда подписываем графики.

График квадратичной, кубической функции, график многочлена

Парабола. График квадратичной функции ( ) представляет собой параболу. Рассмотрим канонический случай:

Вспоминаем некоторые свойства функции .

Область определения – любое действительное число, . Область определения любой функции стандартно обозначается через . Буква обозначает множество действительных чисел.

Область значений – это множество всех значений, которые может принимать переменная «игрек». В данном случае: – множество всех положительных значений, включая ноль. Функция является чётной. Если функция является чётной, то ее график симметричен относительно оси . Это очень полезное свойство, которое заметно упрощает построение графика, в чём мы скоро убедимся. Аналитически чётность функции выражается условием . Как проверить любую функцию на чётность? Нужно вместо подставить в уравнение . В случае с параболой проверка выглядит так: , значит, функция является четной.

Функция не ограничена сверху.

Пример 2

Построить график функции .

В этом примере мы рассмотрим важный технический вопрос: Как быстро построить параболу? В практических заданиях необходимость начертить параболу возникает очень часто, в частности, при вычислении площади фигуры с помощью определенного интеграла. Поэтому чертеж желательно научиться выполнять быстро, с минимальной потерей времени. Сначала находим вершину параболы .

– именно в этой точке и находится вершина параболы. Рассчитываем соответствующее значение «игрек»:

Таким образом, вершина находится в точке

Теперь находим другие точки, при этом пользуемся симметричностью параболы. Следует заметить, что функция не является чётной, но, тем не менее, симметричность параболы никто не отменял.

В каком порядке находить остальные точки, думаю, будет понятно из итоговой таблицы:

Выполним чертеж:


Кубическая парабола

Кубическая парабола задается функцией . Вот знакомый со школы чертеж:


Перечислим основные свойства функции

Область определения – любое действительное число: .

Область значений – любое действительное число: .

Функция является нечётной. Если функция является нечётной, то ее график симметричен относительно начала координат. Аналитически нечётность функции выражается условием . Выполним проверку для кубической функции, для этого вместо «икс» подставим «минус икс»:
, значит, функция является нечетной.

Функция не ограничена

Наверняка, вы заметили, в чем ещё проявляется нечетность функции. Если мы нашли, что , то при вычислении уже не нужно ничего считать, автоматом записываем, что . Эта особенность справедлива для любой нечетной функции.

Теперь немного поговорим о графиках многочленов.

График любого многочлена третьей степени ( ) принципиально имеет следующий вид:


В этом примере коэффициент при старшей степени , поэтому график развёрнут «наоборот». Принципиально такой же вид имеют графики многочленов 5-ой, 7-ой, 9-ой и других нечетных степеней. Чем выше степень, тем больше промежуточных «загибулин».

Многочлены 4-ой, 6-ой и других четных степеней имеют график принципиально следующего вида:


Эти знания полезны при исследовании графиков функций.

График функции

Выполним чертеж:


Основные свойства функции :

Область определения: . Область значений: .

То есть, график функции полностью находится в первой координатной четверти.

Функция не ограничена сверху. При построении простейших графиков с корнями также уместен поточечный способ построения, при этом выгодно подбирать такие значения «икс», чтобы корень извлекался нацело:

График гиперболы

.

Основные свойства функции :

Область определения: . Область значений: .

Запись обозначает: «любое действительное число, исключая ноль»

В точке функция терпит бесконечный разрыв.

Прямая (к которой бесконечно близко приближается график какой-либо функции) называется асимптотой.

В данном случае ось является вертикальной асимптотой для графика гиперболы при .

 График функции вида ( ) представляют собой две ветви гиперболы.

Если , то гипербола расположена в первой и третьей координатных четвертях.

Если , то гипербола расположена во второй и четвертой координатных четвертях.

Пример 3

Построить правую ветвь гиперболы

Используем поточечный метод построения, при этом, значения выгодно подбирать так, чтобы делилось нацело:

Выполним чертеж:


Не составит труда построить и левую ветвь гиперболы, здесь как раз поможет нечетность функции. Грубо говоря, в таблице поточечного построения мысленно добавляем к каждому числу минус, ставим соответствующие точки и прочерчиваем вторую ветвь.

 

График показательной функции

В данном параграфе я сразу рассмотрю экспоненциальную функцию , поскольку в задачах высшей математики в 95% случаев встречается именно экспонента.

– это иррациональное число: , это потребуется при построении графика. Трёх точек, пожалуй, хватит:

График функции пока оставим в покое, о нём позже.

Основные свойства функции :

Область определения: – любое «икс».

Область значений: . Обратите внимание, что ноль не включается в область значений. Экспонента – функция положительная, то есть для любого «икс» справедливо неравенство , а сам график экспоненты полностью расположен в верхней полуплоскости.

Функция не ограничена сверху: .

График экспоненциальной функции будет «взмывать» вверх на бесконечность очень быстро и круто, уже при

Принципиально такой же вид имеет любая показательная функция , если . Функции , , будут отличаться только крутизной наклона графика, причем, чем больше основание, тем круче будет график.

Обратите внимание, что во всех случаях графики проходят через точку , то есть . Это значение должен знать даже «двоечник».

Теперь рассмотрим случай, когда основание . Снова пример с экспонентой – на чертеже соответствующий график прочерчен малиновым цветом? Что произошло? Ничего особенного – та же самая экспонента, только она «развернулась в другую сторону». Принципиально так же выглядят графики функций , и т. д.

График логарифмической функции

Рассмотрим функцию с натуральным логарифмом .
Выполним поточечный чертеж:

Если позабылось, что такое логарифм, отсылаю вас к школьным учебникам, академик Холмогоров свой хлеб все-таки не зря ест.

Основные свойства функции :

Область определения:

Область значений: .

Функция не ограничена сверху: , пусть и медленно, но ветка логарифма уходит вверх на бесконечность.
Обязательно нужно знать и помнить типовое значение логарифма: .

Принципиально так же выглядит график логарифма при основании : , , (десятичный логарифм по основанию 10) и т.д. При этом, чем больше основание, тем более пологим будет график.

Экспоненциальная функция и логарифмическая функция – это две взаимно обратные функции. Если присмотреться к графику логарифма, то можно увидеть, что это – та же самая экспонента, просто она расположена немного по-другому.


Дата добавления: 2019-07-17; просмотров: 47;