Горизонтальные связи в пределах первичной зрительной коры



Схема обработки зрительной информации, подобная той, представляет собой рабочую модель, которая помогает придать нашим представлениями более организованный вид. Однако разделение крупноклеточного и мелкоклеточного пути — для определения контраста, движения и глубины изображения, с одной стороны, и цвета и фона — с другой — ни в коей мере не является полным. Взаимодействие между ними обнаруживается даже в области V,, где сигналы от крупноклеточных клеток можно обнаружить в зоне пятен и между пятнами. Более того, только зоны V1 и V2 четко определены и относительно их границ имеется согласие; дополнительные же зоны ассоциативной зрительной коры не имеют четко очерченных границ. Свойства рецептивных полей клеток, расположенных в этих зонах, могут сильно варьировать и различные типы зрительных полей могут быть представлены не в столь четко организованном порядке.

В самой зоне V1 было описано большое разнообразие связей, что предполагает наличие более сложных принципов организации, чем ранее предполагалось. Использование классических методов окраски, таких как окраска (импрегнация) по Гольджи, выявляет доминирование нейронных отростков, которые направляются, в основном, перпендикулярно поверхности коры из слоя в слой. При помощи внутриклеточных инъекций красителей было показано, что кортикальные нейроны имеют также длинные горизонтальные отростки, которые простираются латерально от колонки к колонке (рис. 1.А). Соединения, подобные этим, дают большой вклад в синтез удлиненных рецептивных полей простых клеток слоя 6 зоны V1 : рецептивные поля клеток слоя 5 комбинируются и добавляются конец в конец к полям простых клеток слоя 6 при помощи длинных горизонтальных аксонов. Было обнаружено большое количество простых и комплексных клеток с длинными горизонтальными отростками, имеющими длину более 8 мм, образующих сверхколонки. Отдельный нейрон, таким образом, может интегрировать информацию с целой зоны поверхности сетчатки в несколько раз превосходящей размеры рецептивного поля, измеряемого стандартными методами.

Особенный интерес представляет то, что соединения образуются между колонками, которые имеют сходные ориентационные особенности. Доказательства таких особых соединений были получены при помощи двух дополнительных методов. Во-первых, когда метки были введены в одну колонку, они транспортировались в удаленную сверхколонку, имеющую те же ориентационные предпочтения (рис.1.В). Во-вторых, при помощи перекрестной корреляции паттернов активности нейронов, имеющих одни и те же ориентационные предпочтения, но расположенных в разных удаленных друг от друга колонках, можно сделать вывод, что между ними имеются функциональные связи. Более того, после повреждения сетчатки, кортикальные клетки, лишенные сигнала, также демонстрируют ответы на удаленные стимулы, которые располагаются вне пределов их «нормальных» рецептивных полей.

Рецептивные поля обоих глаз, конвергирующие на кортикальных нейронах

 

Когда мы смотрим на объект одним или двумя глазами, мы видим только одно изображение, даже если размер и расположение проекции объекта немного отличается на двух сетчатках. Интересно, что еще более 100 лет назад Иоханес Мюллер предположил, что отдельные нервные волокна от обоих глаз могут пересекаться и образовывать связи с одними и теми же клетками в ЦНС. Таким образом, он почти предвидел результаты, полученные Хьюбелем и Визелем. Они обнаружили, что около 80 % всех кортикальных нейронов в зрительных областях мозга кошки получают сигналы от обоих глаз. Поскольку нейроны, располагающиеся в различных слоях ЛКТ, преимущественно иннервированы либо одним, либо другим глазом, формирование перекрестного взаимодействия между различными глазами становится возможным только в коре. Как уже упоминалось ранее, разделение происходит в слое 4 первичной зрительной коры, где каждая простая клетка получает сигнал только от одного глаза, игнорируя другой. Смешивание сигнала от двух глаз происходит на следующих этапах переключения, то есть в слоях, расположенных глубже (по направлению к белому веществу) и в слоях, более близких к поверхности коры.

Исследование рецептивных полей клеток, получающих бинокулярную информацию, показывает, что (1) рецептивные поля их обычно находятся в абсолютно эквивалентных частях зрительного поля обоих глаз, (2) они имеют одинаковую предпочтительную ориентацию и (3) соответствующие зоны рецептивных полей дополняют эффекты друг друга. Синергичное действие двух глаз на примере простой клетки показано на рис. 2. Освещение "of"-зоны левого глаза суммируется с освещением "of"-зоны правого глаза. Одновременное освещение в антагонистических зонах обоих глаз уменьшает текущую активность и усиливает "off"-разряды. Подобные клетки отвечают сигналами на одинаковые изображения в обоих глазах.

 

Рис. 1. Горизонтальные связи в зрительной коре. (А) Вид поверхности пирамидальной клетки зоны V1 кошки после введения пероксидазы хрена. Отростки простираются примерно на 3 мм вдоль поверхности коры. Тонкие веточки и синаптические бутоны данного нейрона обнаруживаются в нескольких отдельных кластерах, отдаленные друг от друга на расстояние 800 мм и более. (В) Микросферы с метками были введены в область, где клетки имеют предпочтение к вертикальной ориентации (помечено черным "X"). Микросферы захватываются терминалями аксона и транспортируются ретроградно в тела клеток, проецирующих свои отростки в область введения. Колонки вертикальной ориентации были также помечены, используя деоксиглюкозу, во время стимуляции глаза вертикально ориентированными полосками света. Микросферы с метками были обнаружены в зонах, помеченных деокси глюкозой, что говорит о наличии горизонтальных связей между клетками одной и той же ориентационной чувствительности.


Для восприятия глубины изображения существует иная бинокулярная специализация рецептивных полей. Объект, находящийся за плоскостью фокуса, проецируется в неодинаковые зоны двух сетчаток. Нейроны, обладающие свойствами воспринимать глубину трехмерного изображения, были обнаружены в первичной и ассоциативной зрительной коре. Для таких клеток оптимальным стимулом является определенным образом ориентированная полоска, расположенная впереди от плоскости фокуса (для одних клеток) или позади ее (для других). При представлении этой полоски только одному глазу или обоим глазам, однако в пределах плоскости фокуса, сигналы не вызываются. Для того, чтобы клетка ответила разрядами, необходимо, чтобы изображение было различным на обеих сетчатках. Однако такое различное изображение на сетчатках может приводить к активации комплексных клеток первичной зрительной коры и к отклонению глаза для того, чтобы сфокусироваться на объекте. Восприятие глубины осуществляется в высших корковых зонах. Например, кластеры нейронов, имеющие предпочтения для подобного рода различных бинокулярных изображений, были обнаружены в ассоциативной зрительной коре V5 (зона МТ). При электрической стимуляции этих нейронов у тренированных обезьян нарушалось восприятие глубины изображения.


Дата добавления: 2019-07-15; просмотров: 241; Мы поможем в написании вашей работы!

Поделиться с друзьями:






Мы поможем в написании ваших работ!