Разработка структурной схемы системы



Рис. 6.1. Структурная схема системы

 

Рис. 6.2. Структурная схема ПИД - регулятора.


Заключение

Таким образом, подводя итог работе, можно отметить, что в ходе её выполнения были определены параметры регулирования системы, включающей в себя нелинейный теплоэнергетический объект (котел для подогрева воды). Были достигнуты следующие результаты:

1. По временным трендам с помощью программы Matlab проведена идентификация данного объекта.

2. Построены все необходимые графики.

3. Рассчитаны показатели качества.


Приложение

 

clear

% 19-20 Температура смазки dan=xlsread('opertrend');

y=dan(:,19);

u=dan(:,20);

n=length(y);

t=0:3:3*(n-1);

%Вычисление коэффициента передачи

my(1)=y(1);mu(1)=u(1);

for i=2:n

my(i)=my(i-1)+(y(i)-my(i-1))/i;

mu(i)=mu(i-1)+(u(i)-mu(i-1))/i;

ko(i)=my(i)/mu(i);

end

plot(t,ko),grid

%title ('Изменение коэффициента

передачи объекта')

xlabel ('Time, s')

ylabel ('К')

pause

yc=(y-my');

uc=u-mu';

subplot(2,1,1),grid

plot(t,u),grid

title ('Centeres input signal')

ylabel ('U')

subplot(2,1,2),grid

plot(t,y),grid

title ('Centeres output signal')

xlabel ('Time, s')

ylabel ('Y')

pause

% Анализ сигналов объекта

du=std(u)^2;

dy=std(y)^2;

ru=xcorr(uc,'biased');

ry=xcorr(yc,'biased');

ruy=xcorr(uc,yc,'biased');

tau=-n+1:1:n-1;

subplot (3,1,1)

plot(3*tau,ru),grid

title ('Correlation functions')

ylabel ('Ruu')

subplot(3,1,2)

plot(3*tau,ry),grid

ylabel ('Ryy')

subplot(3,1,3)

plot(3*tau,ruy),grid

xlabel ('Time, s')

ylabel ('Ruy')

pause

[S,f]=psd(uc,n,1/3);

subplot(2,1,1)

plot(f(1:10),S(1:10)/max(S)),grid

title ('Spectrs')

ylabel ('Suu')

[S,f]=psd(yc,n,1/3);

subplot(2,1,2)

plot(f(1:10),S(1:10)/max(S)),grid

xlabel ('Frequencies, Hz')

ylabel ('Syy')

pause

subplot(2,1,1)

hist(u,20),grid

title ('Histograms')

ylabel ('Hu')

subplot(2,1,2)

hist(y,20),grid

xlabel ('Intervals, mm')

ylabel ('Hy')

pause

subplot(1,1,1)

% RMNK

m=2;

clear Tp

P=1000*eye(2*m,2*m);

Q=zeros(2*m,1);

F=Q;

for i=1:n-m

F=[-yc(i+m-1:-1:i);uc(i+m-1:-1:i)];

ch=P*F;

zn=1+F'*P*F;

gm=ch/zn;

P=(eye(2*m)-gm*F')*P;

Q=Q+gm*(yc(m+i)-F'*Q);

kf(i,1:2*m)=Q';

Tp(i)=F'*Q;

end

% Анализ ошибки моделирования

e=yc(m+1:end)-Tp';

de=std(e);

plot(t(100:n-m),kf((100:end),:)),grid

title ('Model parametres')

xlabel ('Time, s')

ylabel ('Km')

pause

sr=[yc(m+1:end),Tp'];

plot(t(1:n-m),sr),grid

title ('Model and object outputs')

xlabel ('Time, s')

ylabel ('Y, Yм')

pause

plot (t(1:n-m),e),grid

title ('Model error')

xlabel ('Time, s')

ylabel ('Em')

pause

re=xcorr(e,'biased');

plot(3*tau,ru),grid

title ('Error correlation function')

xlabel ('Time, s')

ylabel ('Ree')

pause

[S,f]=psd(e,n,1/3);

plot(f,S/max(S)),grid

title ('Error spector')

xlabel ('Frequncy, Hz')

ylabel ('Suu')

pause

hist(e,20),grid

title ('Error histogram')

xlabel ('Interval, mm')

ylabel ('Hu')

pause

% Модели объекта

nun=[kf(end,m+1:2*m) 0];

den=[1 kf(end,1:m)];

wod=tf(nun,den,3)

[z,p,k]=zpkdata(wod,'v')

if abs(p(1)-1)<.05

p(1)=1;

end

wodf=zpk(z,p,k,3)

wo=d2c(wodf)

sm=ss(wo)

impulse(wo),grid

pause

step(wo,wodf),grid

pause

bode(wo),grid

pause

nyquist(wo),grid

pause

wonz=zpk(wo)

ym=lsim(wo,uc,t);

f=yc-ym;

%Wc=gram(sm,'c')

%Wo=gram(sm,'o')

K=lqry(sm,100000000,1)

[A,B,C,D]=ssdata(sm);

P=ss(A,[B B],C,[D D]);

Kest=kalman(P,du,0.01)

G=lqgreg(Kest,K);

clsm=feedback(sm,G,+1);

q1=tf(Kest);

q2=tf(G);

impulse(sm,'r-',clsm,'b-'),grid

pause

step(sm,'r-',clsm,'b-'),grid

pause

bode (sm,'r-',clsm,'b-'),grid

pause

nyquist(sm,'r-',clsm,'b-'),grid

save('f','f')

save('wo','wo')


Литература

 

1. Математическое моделирование: Методы описания и исследования сложных систем. – М.: Наука, 1989.

2. Методы классической и современной теории автоматического управления: Учебник в 3-х т. Т1: Синтез регуляторов и теория оптимизации систем автоматического управления / под ред Н.Д. Егупова. - М.: Изд-во МГТУ им Баумана, 2000. – 736 с.

3. Советов Б.Я., Яковлев С.А. Моделирование систем. – М.: Высшая школа. 1988 (Дополнительная).

4. Александров А.Г. Оптимальные и адаптивные системы. – М: Высшая школа . 1986.

5. Изерман Р. Цифровые системы управления / Пер. с англ. – М.: Мир, 1984. – 541 с.

6. Кашьян Р. Л., Рао А. Р. Построение динамических стохастических моделей по экспериментальным данным. – М: Мир, 1983. 384 с.

7. Ивахненко А. Г., Юрачковский Ю. Г. Моделирование сложных систем по экспериментальным данным. - М.: Радио и связь, 1987. - 120 с.

8. Кендал М. Временные ряды. – М.: Радио и связь, 1981. – 198 с.


Дата добавления: 2019-07-15; просмотров: 149; Мы поможем в написании вашей работы!

Поделиться с друзьями:






Мы поможем в написании ваших работ!