Закон Ома (в обобщённой форме )



Закон Ома применяется для расчёта токов и напряжений в отдельных ветвях цепи или для одноконтурной замкнутой цепи, не имеющей разветвлений.

При написании закона Ома следует прежде всего выбрать произвольно некоторое положительное направление тока.

Для ветви, состоящей только из сопротивлений и не содержащей ЭДС (см. рис.1 для ветви ba), при положительном направлении тока от (·) b к (·) a имеем:

 

, где

φ b , φaпотенциалы точек (узлов a,b);

Uba разность потенциалов между точками b и a;

Rba - ??? сопротивление цепи, Rba= R1+ R2

Рис.1

 

Для ветви, состоящей из сопротивлений и ЭДС (ветвь acb), рис.1 ток:

 

, где

 

Uab напряжение на концах ветви acb, отсчитываемое по выбранному положительному направлению тока;

ΣE – алгебраическая сумма ЭДС, находящаяся в этой ветви

 

 

Применение законов Кирхгофа

 

1. Устанавливается условно положительное направление тока.

2. Выбираются независимые контуры (контур, содержащий хотя бы один новый элемент).

3. Составляются уравнения по I закону Кирхгофа. Их число равно:


(1)

где Ny – число узлов;

Nн – число источников напряжений, если они расположены между узлами, не имеющими сопротивлений.

 

4. Составляется уравнение по II закону Кирхгофа:

 

 (2)

 

где NB – число ветвей, Ny – число узлов;

NT – число источников тока, если они расположены между узлами, не имеющими проводимостей.

 

При составлении уравнений по II закону Кирхгофа следует выбирать независимые контуры, т.е. не содержащие источников тока.

Выбирается направление обхода контуров (произвольно).

При записи левой части равенства ЭДС, направления которых совпадают с выбранными направлениями обхода (независимо от направления тока, протекающего через них), принимаются положительными, а ЭДС, направленные против выбранного обхода, - отрицательными.

При записи правой части равенства со знаком «плюс» берутся падения напряжения в тех ветвях, в которых выбранное положительное направление тока совпадает с направлением обхода (независимо от направления ЭДС в этих ветвях), и со знаком «минус», падения напряжения в тех ветвях, в которых положительное направление тока противоположно направлению обхода.

 

 

Решение:

К I = Ny – 1 – Nн = 4 – 1 – 0 = 3

 

Выбираем (·)a, (·)b, (·)c.

( ·) a: I3 – I1 = 0

( · )b: I4 – I2 – I3 = 0

( · )c: I6 + I1 – I4 = 0

KII = NB – (Ny – 1) – NT = 6 – (4 – 1) – 0 = 3

R3 I3 + R1 I1 + R4 I4 = E1 (I)

R1 I1 – R5 I5 – R6 I6 = E1 (II)

R2 I2 + R6 I6 + R4 I4 (III)

 

 

Вторым законом Кирхгофа можно пользоваться для определения напряжения между двумя произвольными точками схемы. В этом случае необходимо ввести в левую часть уравнений исходное напряжение вдоль пути, как бы дополняющего незамкнутый контур до замкнутого. Например, для определения напряжения Umn можно написать уравнение для контура mncb или nmbc:

Umn + I4 R4 + I3 R3 = E1 или  - I3 R3 – Umn – I4 R4 = - E1

 

откуда легко можно найти искомое напряжение (необходимо при рассмотрении метода узловых потенциалов)

 


Дата добавления: 2019-07-15; просмотров: 27;