Инертная и гравитационная массы.



Для экспериментального определения массы данного тела можно исходить из закона (1), куда масса входит как мера инертности и называется поэтому инертной массой. Но можно исходить и из закона (5), куда масса входит как мера гравитационных свойств тела и называется соответственно гравитационной (или тяжелой) массой. В принципе ни откуда не следует, что инертная и гравитационная массы представляют собой одну и ту же величину. Однако целым рядом экспериментов установлено, что значения обеих масс совпадают с очень высокой степенью точности (по опытам, проделанным советскими физиками (1971 г.),— с точностью до ). Этот экспериментально установленный факт называют принципом эквивалентности. Эйнштейн  положил его в основу своей общей теории относительности (теории тяготения).

Исходя из изложенного, в механике пользуются единым термином «масса», определяя массу как меру инертности тела и его гравитационных свойств.

ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ ДВИЖЕНИЯ ТОЧКИ. РЕШЕНИЕ ЗАДАЧ ДИНАМИКИ ТОЧКИ

ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ ДВИЖЕНИЯ МАТЕРИАЛЬНОЙ ТОЧКИ

Для решения задач динамики точки будем пользоваться одной из следующих двух систем уравнений.

Уравнения в декартовых координатах.

Из кинематики известно, что движение точки в прямоугольных декартовых координатах задается уравнениями:

              (9)

Задачи динамики точки состоят в том, чтобы, зная движение точки, т. е. уравнения (9), определить действующую на точку силу или, наоборот, зная действующие на точку силы, определить закон ее движения, т.е. уравнения (9). Следовательно, для решения задач динамики точки надо иметь уравнения, связывающие координаты х, у, zг этой точки и действующую на нее силу (или силы). Эти уравнения и дает второй закон динамики.

Рассмотрим материальную точку, движущуюся под действием сил ., по отношению к инерциальной системе отсчета Охуг. Проектируя обе части равенства (2), т.е. равенства  оси х, у, zг и учитывая, что  и т.д., получим

  (10)

или, обозначая вторые производные по времени двумя точками,

  (10')

Это и будут искомые уравнения, т.е. дифференциальные уравнения движения точки в прямоугольных декартовых координатах. Так как действующие силы могут зависеть от времени t, от положения точки, т. е. от ее координат х, у, z, и от скорости, т. е. от , , то в общем случае правая часть каждого из уравнений (10) может быть функцией всех этих переменных, т. е. t, х, у, z, одновременно.

Уравнения в проекциях на оси естественного трехгранника. Для получения этих уравнений спроектируем обе части равенства  на оси M t nb, т.е. на касательную М t: к траектории точки, главную нормаль Мп, направленную в сторону вогнутости траектории, и бинормаль Mb

 

 

 


. Тогда, учитывая, что , ,  получим

    (11)

Уравнения (11), где v=ds!dt, представляют собой дифференциальные уравнения движения точки в проекциях на оси естественного трехгранника.

 


Дата добавления: 2019-07-15; просмотров: 150; Мы поможем в написании вашей работы!

Поделиться с друзьями:






Мы поможем в написании ваших работ!