Дифференциальные функции. Определение дифференциала.



Министерство общего и профессионального образования

Астраханский Государственный Педагогический Университет

Бакалаврская работа

Студентки IV курса физико–математического факультета

Ночевной Светланы Павловны

Кафедра:

Математического анализа

 

Тема:

Основные понятия дифференциального исчисления и история их развития

 

Научный руководитель

Ст. преподаватель

Пономарёва Н.Г.

Астрахань

Г.


План.

1. Основные понятия дифференциального исчисления функций одной переменной.

1.1. Определение производной и её геометрический смысл.

1.2. Дифференциальные функции. Определение дифференциала.

1.3. Инвариантность формы первого дифференциала.

1.4. Дифференциал суммы, произведения и частного.

1.5. Геометрическая интерпретация дифференциала.

2. Основные понятия интегрального исчисления функций одной переменной.

2.1. Первообразная функция и неопределённый интеграл.

2.2. Геометрический смысл неопределённого интеграла.

2.3. Основные свойства неопределённого интеграла.

2.4. Метод непосредственного интегрирования.

2.5. Метод замены переменной (способ подстановки).

2.6. Интегрирование по частям.

2.7. Определённый интеграл как предел интегральной суммы.

2.8. Основные свойства определённого интеграла.

2.9. Геометрический смысл определённого интеграла.

2.10. Теорема Ньютона–Лейбница.

2.11. Формула Ньютона–Лейбница.

2.12. Замены переменных в определённых интегралах.

2.13. Интегрирование по частям. 

3. Исторические сведения о возникновении и развитии основных понятий.

3.1. Происхождение понятия определённого интеграла и инфинитезимальные методы Архимеда.

3.2. От Архимеда к Кеплеру и Кавальери.

3.3. Теорема Паскаля.

3.4. «О глубокой геометрии» Лейбница.

3.5. «Метод флюксий» Ньютона.

3.6. Дифференциальные методы. 


Цель работы: «Изучить основные понятия дифференциального и интегрального исчислений и ознакомиться с историей их развития».

Основные понятия дифференциального исчисления функций одной переменной.

Определение производной и её геометрический смысл.

Пусть функция y = f(х) определена в окрестности точки хо. возьмём точку х1 этой окрестности, отличную от хо.

Определение. Разность х1 х0, которую обозначают символом Dх, будем называть приращением независимой переменной.   

Определение. Подобным образом соответствующая разность

у1 у0 = f(х1) – f(х0), обозначается символом Dу и называется приращением зависимой переменной, или приращением функции.

Получаются следующие соотношения:

                   х1 = х0 + Dх,

                   у1 = у0 + Dу,

у0 + Dу = f(х0 + Dх)

Так как       у0 = f(х0),

то               Dу =  f(х0 + Dх) –  f(х0).

 
Dу  f(х0+Dх)– f(х0) Dх          Dх  


Определение. Частное                         будем называть разностным отношением.

Выражение  f(х0+ Dх)– f(х0)

                     Dх

(принимая что х0 имеет определённое постоянное значение) можно считать функцией приращения Dх.

Определение. Если предел этого выражения при Dх, стремящемся к нулю, существует, то его мы будем называть производной функции у = f(х) по х в точке х0

 


lim f(х0+ Dх)– f(х0)    lim Dу Dх®0        Dх            Dх®0Dх
Итак,                       =    = f’(х0) = у’х = у’=          

                                      

Пример.  у=х2 . Вычислите производную для х=2.

Имеем:      f(х+Dх) = (х+Dх)2 ,

Поэтому Dу = (х+Dх)2х2 = 2хDх+(Dх)2

Dу Dх
 

Отсюда           = 2х+Dх

     
lim Dу Dх®0Dх
 
lim Dх Dх®0


Переходя к пределу получим:         = 2х +        = 2х.

 
Dу Dх


lim Dу = 0 Dх®0
Для того, чтобы отношение имело предел, необходимо, чтобы , то есть, чтобы функция           рис.1

была непрерывной в точке х0.

Рассмотрим график функции у = f(х) (рис.1)

 
Dу Dх


Легко заметить, что отношение  равно тангенсу угла a, образованного положительным направлением секущей, проходящей через точки А и В (соответствующие точкам х и х+Dх), с положительным направлением оси Ох, то есть, от А к В если теперь приращение Dх будет стремиться к нулю, точка В будет стремиться к А, то угол a будет стремиться к s, образованному положительным направлением касательной с положительным направлением оси Ох, а tg a будет стремиться к tg s.

lim Dу Dх®0Dх
Поэтому       = tg s (положительным направлением касательной считаем то направление, в котором х возрастает).

Таким образом, можно утверждать следующее:

Производная в данной точке х равна тангенсу угла, образованного положительным направлением касательной в соответствующей точке (х,f(х)) нашей кривой с положительным направлением оси Ох.

Дифференциальные функции. Определение дифференциала.

Определение. Функция у = f(х) называется дифференцированной в точке х, если её приращение Dу в этой точке можно представить в виде

lim Dх®0
                 Dу = f’(х)Dх+a(Dх)Dх,

где    a (Dх) = 0

Dу Dх
Как видно из из определения, необходимым условием дифференцируемости является существование производной. Оказывается что это условие также и достаточно. В самом деле пусть существуют у’ = f’(х)

a(Dх)=
Положим                   – f’(х), Dх ¹ 0

0 , Dх = 0

При таком определении a имеет для всех Dх 

Dу = f’(х)Dх +a(Dх)Dх .

lim Dх®0
Остаётся, следовательно, установить непрерывность a(Dх) при Dх = 0, то есть, равенство     a (Dх) = a(0) = 0, но, очевидно,

          a (Dх) =       – f’(х) = f’(х) – f’(х) = 0,

что и требовалось.  

Таким образом, для функции одной переменной дифференцируемость и существование производной — понятия равносильные.

lim Dх®0
Определение. Если функция у = f’(х) дифференцируема, то есть, если Dу = f’(х)Dх + a . Dх,        a = 0,

                 то главную линейную часть f’(х)Dх, её приращения будем обозначать dху, dхf(х) и называть дифференциалом переменной у по переменной х в точке х.

Написав для симметрии dхх вместо Dх, получим следующую формулу:

d х у dхх
dху = f’(х)dхх,

откуда            = f’(х).

Заметим ещё, что дифференциалы dху и dхх являются функциями переменной х, причём функция dхх принимает постоянное значение Dх.


Дата добавления: 2019-07-15; просмотров: 199; Мы поможем в написании вашей работы!

Поделиться с друзьями:






Мы поможем в написании ваших работ!