Агрофізична деградація ґрунтів



 

Втрати гумусу супроводжуються погіршенням агрофізичних вла­стивостей ґрунтів. Дослідження В. В. Медведєва (1982) свідчать про таке їх погіршення порівняно з цілиною: на 4—11 % маси ґрунту зросла брилистість, на 3—6 % — розпорошеність, на 10— 18 % знизився вміст агрономічне цінних агрегатів (розмір 10— 0,25 мм), на 15—19 % — водотривкість ґрунтової структури, на 16—26 % — механічна міцність, на 2—4 % — пористість агрега­тів розміром від 5 до 0,25 мм при середніх значеннях цих пока­зників на цілині 8, 15, 17, 55, 90, 42 % відповідно. Водопроник­ність ґрунтів в максимально розпушеному стані становить 120— 142 мм/год, а при рівноважній щільності — 55 мм/год. Зміна структурного стану, погіршення водно-фізичних власти­востей обумовили підсилення процесів водної ерозії, дефляції, зниження потенціальної і ефективної родючості.

Агрофізична деградація призвела до зменшення глибини коренемісткого шару, зниження польової вологоємності, діапазону активної вологи, її доступність рослинам, а також рухомість елементів живлення. Погіршилась якість обробітку ґрунту і збільшились затрати на його проведення.

Істотним чинником змін в агроекосисгемі є застосування сільськогосподарських машин. Сучасні трактори, автомобілі та сільськогосподарські машини активно взаємодіють з ґрунтом, атмосферою і рослинами, в багатьох випадках це спричинює порушення ходу природних процесів в агроландшафті. Через не­правильне та надмірне використання сільськогосподарської тех­ніки вплив її на довкілля супроводжується забрудненням атмо­сфери, ґрунту та водойм, руйнуванням структури і переущіль­ненням ґрунту. Машинно-тракторні агрегати (tyl TA), виконуючи корисну роботу, у багатьох випадках надмірно ущільнюють об­роблюваний шар ґрунту. Особливо зріс негативний вплив МТА на ґрунт за останні роки, коли середня маса трактора збільши­лась у 1,5—2,4 раза, а кількість їх проходів по полю за вегета­ційний період зросла з 3—4 до 10—15 при вирощуванні зерно­вих і до 20—25 — просапних культур.

Трактори К-700, К-700А, К-701, Т-150К, маса яких досягає 8-16 т, у разі проходження по пухкому вологому ґрунті за рахунок ударних впливів і вібрацій спричинюють його деформацію на гли­бину 60—80 см, а в окремих випадках і глибше. В місцевостях з пересіченим рельєфом і зливовим характером опадів глибокі колії нерідко перетворюються на яри, За посушливих умов рух важких МТА з підвищеними швидкостями (до 10—30 км/год) призводить до руйнування структури ґрунту та підсилює процеси дефляції. Переущільнення ґрунтів відбувається внаслідок холостих переїздів МТА по полю, внесення органічних і мінеральних добрив, переве­зення сільськогосподарської продукції вантажними автомобілями.

Такі агротехнічні заходи, як лущення стерні, основний обробі­ток ґрунту, вирівнювання поверхні, культивація, боронування, по­сів, догляд за посівами виконуються за існуючими технологіями окремо, а багато з них і неодноразово. Тому в період польових ро­біт поверхня поля покривається ущільненими смугами, сумарна поверхня яких значно перевищує площу поля. За даними В. В. Медведева та співавт. (1964), при вирощуванні озимої пшениці площа, ущільнення 1 га (без урахування збирально-транспортних опера­цій) досягає в середньому 22—26 тис. м2, кукурудзи — 18—30, цук­рового буряка — 30—32 тис. м2. Дослідження В. В. Медведєва та спївавт. (1989) показали, що трактори всіх марок ущільнюють ґрунт на глибину 50—60 см і глибше , а сліди колії коліс­ного трактора Т-150К видно протягом всього періоду вегетації. Ущільнений чорнозем цілком втрачає міжагрегатні пори. Ґрун­тові агрегати деформуються, витягуються у горизонтальному на­прямку, збільшуючи свою щільність. Це призводить до знижен­ня водо- , повітро- та коренепроникності ґрунту.

За наявності ущільнення тракторами у ґрунті змінюється співвідношення між твердою і газоподібною фазами. Найбіль­ше змінюється щільність одного шару, ЇЇ максимальні значення.

 


Природа кислотності та її види.

 Від складу і кон­центрації речовин, розчинених в ґрунтовому розчині, залежить йо­го активна реакція. Реакція ґрунтового розчину зумовлюється наявністю і співвідношенням в ньому водневих (Н+) і гідроксильних (ОН~) іонів. Величину активної реакції виражають в одиницях рН десятичний логарифм концентрації Н+-іонів з від'ємним зна­ком. Отже, рН =lgH+].

Вода в звичайних умовах в незначній кількості дисоціює, тобто розпадається на іони Н+ і ОН~. Концентрація їх незначна. Добу­ток концентрацій [Нь] * [ОН~ ] = 10~и. В ідеально чистій воді концентрація цих іонів однакова: [Н>] == [ОН~] ==10~7.

Збільшення концентрації іонів Іі+ (доливання кислоти) зумов­лює кислу реакцію розчину [Н+]>10-7. Збільшення концентрації основ підвищує концентрацію іонів ОН~. Розчин набуває лужної

реакції [ОН-]>10-7.

В нейтральних розчинах, в яких [Н+] = [ОН~] =10~7, величи­на рН —7, в кислих — менше 7, в лужних — більше 7. рН ґрунто­вих розчинів коливається в межах від 3 до 9.

Залежно від стану іонів Іі+ розрізняють актуальну і потенці­альну кислотність.

Актуальна кислотність зумовлена наявністю в ґрунтовому роз­чині вільних іонів Н+. її величину (рН) визначають у водних ви­тяжках.

Потенціальна кислотність зумовлена наявністю в ГВК увібра­них іонів Н+ і А13+, які знаходяться в твердій фазі ґрунту. Іони алюмінію підкислюють ґрунтовий розчин внаслідок гідролізу солей

алюмінію.

АІСІз + ЗН2О ->. А1(ОН)3 + ЗНС1.

За способом визначення потенціальної кислотності виділяють обмінну і гідролітичну кислотності.

Обмінна кислотність — концентрація іонів водню, витіснених з дифузного шару колоїдної міцели катіонами нейтральних солей. Для визначення обмінної кислотності використовують 1,0 н. роз­чин КС1 (рН близько 6,0).

Гідролітична кислотність. Іони водню утримуються колоїдною часткою дуже міцно і при обміні з катіонами нейтральної солі пов­ністю не витісняються. Якщо діяти па ґрунт гідролітичне лужною сіллю (солі з сильною основою і слабким кислотним залишком), то відбудеться майже повне витіснення увібраних іонів водню. Для визначення гідролітичної кислотності використовують ЇМ розчин CH3COONa (рН близько 8,2).

Меліорація кислих ґрунтів. Кисла реакція ґрунтів несприятлива для більшості культурних рослин і корисних мікроорганізмів. Вона негативно впливає па процес формування родючості ґрунтів. Кислі ґрунти мають погані фізичні властивості. Через відсутність основ

поживні елементи, не містять хлоридів, сульфатів, карбонатів, їх ґрунтова маса погано оструктурена. Отже, ступінь кислотності ґрунтів е важливим показником під час оцінки генетичної і виробничої якості ґрунту.

За величиною рН ґрунти поділяють на сім агровиробничих груп.

Кожна агровиробнича група потребує певних меліоративних заходів. Для нейтралізації надлишкової кислотності проводять вап­нування ґрунтів. При внесенні вапна СаСО3, реагуючи з вуглекислотою ґрунту, переходить у розчинну сполуку Са(НСОз)2

Дозу вапна розраховують за гідролітичною кислотністю орного горизонту. Внесена доза вапна має повністю нейтралізувати уві­брані Н+ і А13+. Якщо 20-сантиметровий шар ґрунту має щільність 1,3 г/см3, його маса на площі 1 га становитиме 2600 т. Встановле­но, що для нейтралізації 1 г-екв гідролітичної кислотності на 100 г ґрунту на 1 га слід вносити 1,3 т СаСО3. Проте в ґрунт вно­сять не повну дозу вапна, а певну її частину залежно від біологіч­них особливостей культурних рослин.

Крім наведеного методу дозу вапна на 1 га ґрунту можна роз­рахувати, користуючись формулою

а-10-100-3 000 000

1 000 000 000

де а — повна гідролітична кислотність, ммоль.

Доведено, що між рН сольової витяжки і гідролітичною кислот­ністю ґрунту певного механічного складу існує чітка кореляційна залежність. Враховуючи це, розроблені спеціальні таблиці, що да­ють змогу визначити дозу за рН сольової витяжки.


ВИСНОВОК

За останні 50—60 років спостерігається загальнопланетарне підвищення кислотності дощових опадів. Сильне зростання цього показника зареєстровано в багатьох індустріальних районах Швеції, Норвегії, США та Канади. У цих країнах рН дощової води знизився з 6—6,5 до 5—4,6, а в окремі періоди до 4—3,5. За свідченням В. А. Ковди (1989), у Підмосков'ї (Росія) спостеріга­лись випадки, коли рН дощової води опускався до 3—2,6.

Особливо висока кислотність вод виникає під час весняного сніготанення. Реакція таких вод може досягати рН 4—3,5. Кислі талі та дощові води, потрапляючи у ґрунт, спричинюють підки­слення всього профілю ґрунту, а нерідко підкислюють і підґрунтові води. Кислоти, потрапляючи в ґрунт, взаємодіють з його органічною та мінеральною частинами.

Встановлено, що гідроліз і нітрифікація однієї граммолекули NH4NO3 дає в результаті дві грам-молекули HNO3. При нітри­фікації однієї грам-молекули (NH4)2SO4 утворюються дві грам-молекули азотної і одна молекула сірчаної кислоти. З однієї грам-молекули NH4OH за певних умов може утворитися одна грам-молекула азотної кислоти (Новоторов, 1989).

Отже, можна зробити загальний висновок, що кислотні дощі мають надто негативне значення для всього живого, а особливо для людини, тому неможна не брати до уваги негативні наслідки від підкислення ґрунтів.


Використана література:

1. Екологічний енциклопедичний словник / Під заг. ред. І.І.Дедю. – Кишинів, 1990.

2. Энциклопедический словарь юного земледельца. – М., 1988.

3. Застафний Ф.Д. - Географія України. – Львів, 1996.

4. І. Б. Чорний - Географія ґрунтів з основами ґрунтознавства. – К: Вища школа, 1995.

5. Навчальний посібник – Охорона ґрунтів. – К: Знання, 2001.


Дата добавления: 2019-07-15; просмотров: 247; Мы поможем в написании вашей работы!

Поделиться с друзьями:






Мы поможем в написании ваших работ!